Gea Johnson | Structural Option Faculty Advisor: Dr. Hanagan October 23, 2011 Revised: December 16, 2011

1000 CONNECTICUT AVENUE

Washington DC

Technical Report 2: Alternative Floor Framing Systems

Table of Contents

Executive Summary
Introduction
Structural Overview
Foundation7
Framing and Floor System9
Lateral System
Roof System
Design Codes
Structural Materials
Gravity Loads
Dead and Live Loads15
Snow Load16
Floor System Analysis
Two-Way Flat Slab (Existing System)18
Composite Beam and Girder Framing with Composite Steel Deck21
Two-Way Post-Tension Slab25
Composite Joist/ Steel Girder System29
Floor System Summary
Conclusion
Appendix A: Existing System Gravity Load Calculations
Appendix B: Alternative 1 – Composite Steel Floor System with Composite Deck
Appendix C: Alternative 2 – Two-Way Post-Tensioned Slab Floor System
Appendix D: Alternative 3 – Composite Joist/ Steel Girder System
Appendix E: R.S. Means 2010 Cost Details78
Appendix F: Typical Floor Plans80

Executive Summary

1000 Connecticut Avenue is an 11 story, 565, 000 GSF commercial office building located at the corner of K Street and Connecticut Avenue in Washington D.C. The building is used primarily for office space, but also contains retail space on the first level, commercial office space on levels 3-12, a roof-top terrace with a green roof, and four levels of underground parking. The purpose of this technical report is to further understand the existing structural system by spot checking existing structural members and designing three alternative floor framing systems and comparing each to the existing floor system to determine which one more is a more viable alternative.

Spot checks were performed for an interior flat slab panel and an interior column. Both analyses resulted in different member sizes relative to the existing structural members. This difference can be explained through a combination of simplifying assumptions and assumed dead loads.

Further, alternative floor faming systems were design for this tech report and the system comparisons were based on architecture (fire rating and other impacts); structural (foundation and lateral system impact); serviceability (maximum system deflection and vibration control); and construction (additional fire protection and schedule impact). Each system's feasibility was determined based on these four listed criteria. A summary chart of these system comparisons are provided at the end of this report.

For this tech report, the four systems analyzed and designed were the following:

- Two-way flat slab (existing)
- Composite beam/girder system with composite steel deck
- Two-way post-tensioned Slab
- Composite steel joist/steel girder system with composite steel deck

The final design of the alternative floor systems resulted in the following:

- Two-way flat slab system (existing): 8" thick slab with 8" thick drop panels
- Composite steel beam/girder system: a W16x31 beam with (32)- ¾" φ shear studs and a 2" camber and a W21x50 girder with (28)- ¾" φ shear studs
- Two-way post-tension slab: 7" thick slab with 3" thick drop panels and (26) ½" φ 7-wire unbounded tendons in the N-S direction and (18) ½" φ 7-wire unbounded tendons in the E-W direction.
- Composite joist/steel girder system: 14CJ1400/607 composite joist with (40)-%" φ shear studs and a W21x93 girder

After designing each system and using the above criteria for system comparison, it was found that the composite steel beam/girder system, composite joist/steel girder system, and the post-tensioned slab were all viable alternatives. As a result, these three systems will be further investigated to determine which one would be the better floor framing alternative.

The appendices in this report include hand calculations for gravity spot checks and the three alternative floor system designs, as well as typical floor plans and a building section.

Introduction

1000 Connecticut Avenue, NW Office Building is a new 12 story office building located at the northwest intersection of K Street and Connecticut Avenue in Washington DC, as can be seen in Figure 1. The 1000 Connecticut Avenue Office building is designed to achieve LEED Gold certification upon completion. Despite being used primarily for office space, the building is comprised of mix occupancies, which include: office space, a gymnasium, retail, and parking garages. The structure has 4 levels of underground parking. The building's total square footage is 555,000 SF with 370,000 SF above grade and 185,000 SF below grade.

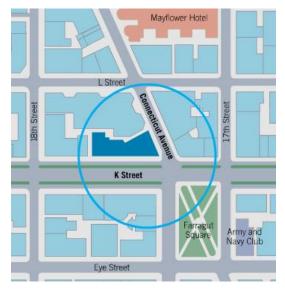


Figure 1 Building Site

To create a new Washington landmark, the building is designed to complement surrounding institutions by blending both traditional and modern materials. The facade consists of a glass, stainless steel and stone panel curtain wall system. Exterior and interior aluminum and glass storefront windows and doors are on the ground level. The lobby and retail space are located on the 1st level, which has a 12'-6 1/2" floor-to-floor story height. A canopy facing K Street brings attention to the main lobby entrance, as can be seen in Figure 2.

Figure 2 Main Lobby Entrance facing K Street (left) and perspective of curtain wall system (right)

Technica Report 2

Beyond the main entrance is a two story intricate lobby space with carrera marble and Chelmsford granite flooring, aluminum spline panels integrated with glass fiber reinforced gypsum (GFRG) ceiling tiles and European white oak wood screens, as can be seen in Figure 3.

Figure 3 Perspective of lobby

The retail space is broken down into several retail stores facing K Street and Connecticut Avenue. These retail stores are housed behind storefront glass to enable display of merchandise to potential customers. The 2nd-12th levels have 10'-7 ½" floor-to-floor story heights. Housed on the typical levels (3rd-12th) is the office space. A combination of tall story heights and a continuous floor to ceiling glass façade enables natural daylight to enter the building space as well as provides scenery to the Washington monuments, Farragut Park , and the White House, as can be seen in Figure 4.

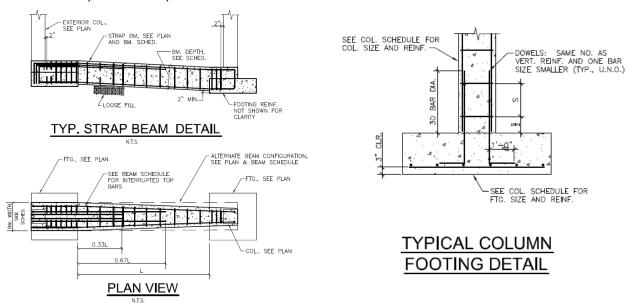
Figure 4 Perspective of typical office with floor-to-ceiling windows that supply views to the city

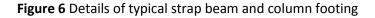
In addition, located on the penthouse level is a roof-top terrace with a green roof and a mechanical penthouse, as can be seen in Figure 5.

Figure 5 Perspective of green roof on roof-top terrace and mechanical penthouse

Housed on the basement levels (B1-B4) are underground parking and a fitness center. A total of 253 parking spaces are provided; level B1 has 19 parking spaces; level B2 has 74 parking spaces; level B3 has 78 parking spaces; level B4 has 82 parking spaces. In addition, the fitness center is located on level B1.

Structural Overview


1000 Connecticut Avenue Office Building's structural system is comprised of a reinforced concrete flat slab floor system with drop panels and a bay spacing of approximately 30 feet by 30 feet. The slab and columns combined perform as a reinforced concrete moment frame. The substructure and superstructure floor systems are both comprised of an 8" thick two-way system with #5 reinforcing bars spaced 12" on center in both the column and middle strips and 8" thick drop panels. The below grade parking garage ramp is comprised of a 14" thick slab with #5 reinforcing bars provided both top and bottom with a spacing of 12" on center.


Foundation

ECS Mid-Atlantic, LLC performed a geotechnical analysis of the building's site soil conditions as well as provided recommendations for the foundation. A total of five borings were observed in the geotechnical analysis. It was determined that a majority of the site's existing fill consists of a mixture of silt, sand, gravel, and wood. The natural soils consisted of sandy silt, sand with silt, clayey gravel, silty gravel, and silty sand. The soil varies from loose to extremely dense in relative density. Based on the samples recovered from the rock coring operations, the rock is classified as completely to moderately weathered, thinly bedded, and hard to very hard gneiss.

At the time of the study, the groundwater was recorded at a boring depth of 7.5 feet below the existing ground surface. The shallow water table is located at an elevation of 35 to 38 feet in the vicinity of the site.

1000 Connecticut Avenue, NW Office Building is supported by a shallow foundation consisting of column footings and strap beams, as can be seen in Figure 6. The typical column footing sizes are $4'-0'' \times 4'-0'', 5'-0'' \times 5'-0'', and 4'-0'' \times 8'-0''.$

The footings bear on 50 KSF competent rock. The Strap beams (cantilever footings) are used to prevent the exterior footings from overturning by connecting the strap beam to both the exterior footing and to an adjacent interior footing. A simplified foundation plan can be seen in Figure 7.

The slab on grade is 5" thick, 5000 psi concrete with 6x6-W2.9xW2.9 wire welded fabric on a minimum 15 mil Polyethylene sheet over 6" washed crushed stone. The foundation walls consists of concrete masonry units vertically reinforced with #5 bars at 16" on center and horizontally reinforced with #4 bars at 12" on center and are subjected to a lateral load (earth pressure) of 45 PSF per foot of wall depth.

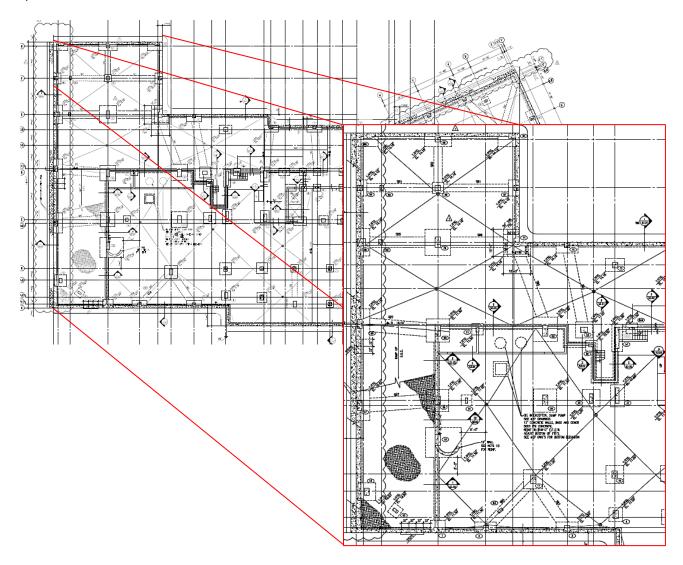
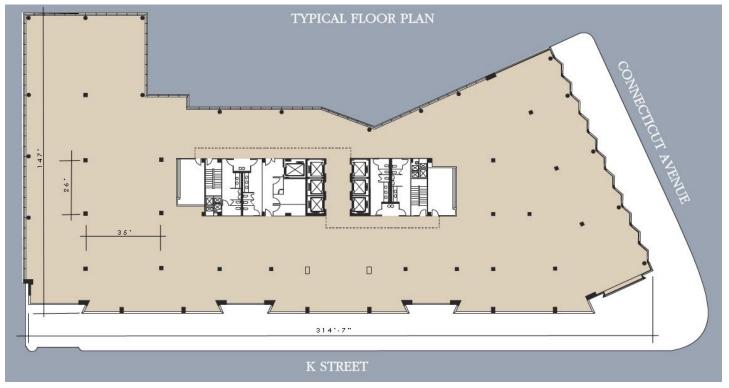
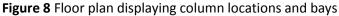
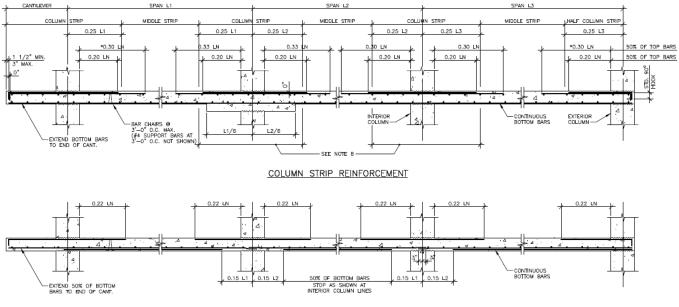




Figure 7 Foundation plan

Framing and Floor System

The framing system is composed of reinforced concrete columns with an average column-to-column spacing of 30'x30', as can be seen in Figure 8. The columns have a specified concrete strength of f'c=8000 psi for columns on levels B4 to level 3, f'c=6000 psi for columns on levels 4-7, and f'c=5000 psi for columns on levels 8-mechanical penthouse. The columns are framed at the concrete floor, as can be seen in Figure 9, and the columns vary in size. The most common column sizes are 24"x24", 16"x48", and 24"x30". The column capitals are 6" thick, measured from the bottom of the drop panel, extending 6" all around the face of the column, as can be seen in Figure 10.

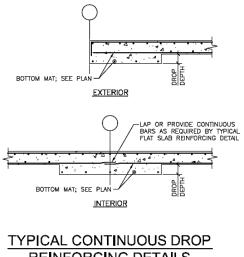
<u>TYPICAL DETAIL OF</u> COLUMN FRAMED AT FLOOR


NOTE: d = COLUMN CAPITAL SIZE; SEE PLAN.

TYPICAL COLUMN CAPITAL DETAIL

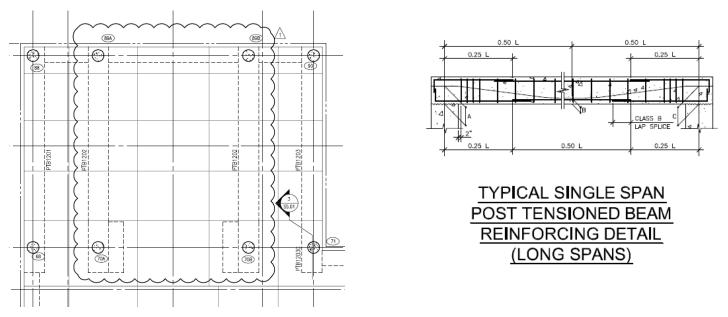
Figure 9 Typical Detail of column framed at the floor

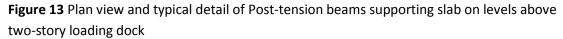
Figure 10 Typical column capital detail


The typical floor system is comprised of an 8" thick two-way flat slab with drop panels reinforced with #5 bottom bars spaced 12" on center in both the column and middle strips, as can be seen in Figure 11.

MIDDLE STRIP REINFORCEMENT

Figure 11 Typical two-way slab reinforcing detail


The individual drop panels are 8" thick, extending a distance d/6 from the centerline of the column, as can be seen in Figure 12.



REINFORCING DETAILS

Figure 12 Typical Continuous drop panel

A 36" wide by 3 ½" deep continuous drop panel is located around the perimeter on all floor levels. Levels 3-12 are supported by four post-tension beams above the lobby area. Due to the two story lobby, there's a large column-to-column spacing. As a result, post tension beams are used to support the slab on levels 3-12 located above the lobby. In addition, four post-tension beams support the slab on levels 3-12 that are located above the two-story parking deck, which also has a large column-to-column spacing, as can be seen in Figure 13.

noon.

IT NOOR

Lateral System

The lateral system is comprised of a reinforced concrete moment frame. The columns and slab are poured monolithically, thus creating a rigid connection between the elements. The curtain wall is attached to the concrete slab, which puts the slab in bending. The curtain wall transfers the lateral load to the slab. The slab then transfers the lateral load to the columns and in turn the columns transfer the load to the foundation. Transfer girders on the lower level are used to transfer the loads from the columns that do not align with the basement columns in order to transfer the load to the foundation. A depiction of how the lateral load is transferred through the system can be seen in Figure 14.

Curtain wall collects the lateral load and en nace directly transfers the load to the concrete slab 100 PL008 The slab transfers the lateral load to the columns BLUCK AND NT. 4 MAR 105.000 The columns transfer the lateral load to the DI UVE O MAR כ foundation

Figure 14 Lateral load path depiction

October 23, 2011

Roof System

The main roof framing system is supported by an 8"thick concrete slab with #5 bars spaced 12" on center at the bottom in the east-west direction. The slab also has 8" thick drop panels. The penthouse framing system is separated into two roofs: Elevator Machine Room roof and the high roof. The elevator machine room roof framing system is supported by 14" and 8" thick slab with #7 bars with 6" spacing on center top and bottom in the east-west direction.

Design Codes

According to sheet S601, the original building was designed to comply with the following:

- 2000 International Building Code (IBC 2000)
- Building Code Requirements for Structural Concrete (ACI 318)
- Specifications for Structural Concrete (ACI 301)
- Manual of Standard Practice for Detailing Reinforced Concrete Structures (ACI 315)
- Specification for the Design, Fabrication and Erection of Structural Steel for Buildings (AISC manual), Allowable Strength Design (ASD) method

The codes that were used to complete the analyses within this technical report are the following:

- ACI 318-08
- Minimum Design Loads for Building and Other Structures (ASCE 7-10)
- AISC Steel Construction Manual, 14th Edition, Load and Resistance Factor Design (LRFD) method
- Vulcraft Steel Roof and Floor Deck Catalog, 2008
- Vulcraft Composite and Non-Composite Floor Joist Catalog, 2009

Structural Materials

Table 1 below shows the several types of materials that were used for this project according to the general notes page of the structural drawings on sheet S601.

	Concrete (Cast-in-Place)	
Usage	Weight	Strength (psi)
Spread Footings	Normal	4000
Strap Beams	Normal	4000
Foundation Walls	Normal	4000
Formed Slabs and Beams	Normal	5000
Columns	Normal	Varies (based on column
		schedule)
Concrete Toppings	Normal	5000
Slabs on Grade	Normal	5000
Pea-gravel concrete (or grout)	Normal	2500 (for filling CMU units)
All other concrete	Normal	3000
	Reinforcing Steel	
Туре	Standard	Grade
Deformed Reinforcing Bars	ASTM A615	60
	ASTM A775	N/A
Welded Wire Fabric	ASTM A185	N/A
Reinforcing Bar Mats	ASTM A184	N/A
	Post-Tensioning (Unbonded)	
Туре	Standard	Strength (ksi)
Prestressed Steel (seven wire low-	ASTM A416	270
relaxation or stressed relieved		
strand)		
	Miscellaneous Steel	
Туре	Standard	Grade
Structural Steel	ASTM A36	N/A
Bolts	ASTM A325	N/A
Welds	AWS	N/A

Table 1Design materials

Gravity Loads

For this technical report, live loads and snow loads were compared to the loads listed on the structural drawings. In addition, dead loads were calculated and assumed in order to spot check gravity members and typical columns. The system evaluations were then compared to the original design. The hand calculations for the gravity member checks can be found in Appendix A.

Dead and Live Loads

Table 2 below is a list of the live loads in which the project was designed for compared to the minimum design live loads outlined in ASCE 7-10.

	Floor Live Loa	ds
Occupancy	Design Load (psf)	ASCE 7-10
Parking Levels	50	40
Retail	100	100
Vestibules &	100	100
Lobbies		
Office Floors	100=(80 psf+ 20 psf	70= (50 psf + 20 psf
	partitions)	partitions)
Corridors	100	100 on ground level
		80 above 1 st level
Stairs	100	100
Balconies &	100	100
Terraces		
Mechanical Room	150	-
Pump Room,	150	-
Generator Room		
Light Storage	125	125
Loading Dock,	350	250
Truck Bays		
Slab On Grade	100	-
Green Roof Areas	30	-
Terrace	100	100

Table 2 Summary of design live loads compared to minimum design live loads on ASCE 7-10

 Note: - Means the load for the specified occupancy was not provided

Based on the above design live loads, certain spaces were designed for higher loads to create a more conservative design and to allow for design flexibility. For this technical report, the design live loads were used for the gravity member analyses.

Snow Load

The snow load was determined in conformance to chapter 7 in ASCE 7-10. A summary of the snow drift parameters are shown in table 3.

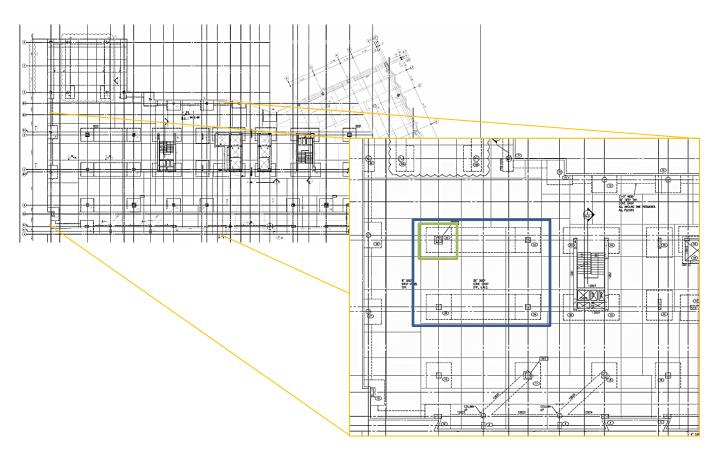
Flat Roof Snow load Cal	culations
Variable	Value
Ground Snow, p _g (psf)	25
Temperature, Factor C _t	1.0
Exposure Factor, C _e	0.9
Importance Factor, I _s	1.0
Flat Roof Snow Load, p _f	15.75

Table 3 Summary of roof snow calculations

According to structural drawing sheet S601, the flat roof snow load was 22.5 psf whereas 15.75 psf was calculated in this technical report. According to ASCE 7-10, $p_f=0.7C_eC_tI_sP_g$, whereas according to IBC 2000, $p_f=C_eC_tI_sP_g$. The difference in the calculated flat roof snow load and the design flat roof snow load is due to a 0.7 reduction factor. The 15.75 psf value was used to determine the snow load and snow drifts. These subsequent calculations can be found in Appendix A.

Table 4 below is a list of the dead loads that were used for the gravity spot checks. The superimposed dead loads for the floor levels and roofs were assumed.

Dead	Loads
Normal Weight Concrete	150 pcf
Curtain Wall	250 plf
Precast Panels	450 plf
Floor Superimposed Dead Load (ceiling, lights,	10 psf
MEP, miscellaneous)	
Main Roof Superimposed Dead Load (ceiling,	10 psf
lights, MEP, miscellaneous)	
Penthouse Roof Superimposed Dead Loads	5 psf


Table 4 Summary of dead loads

Floor System Analysis

Comparisons were made between the existing floor system and three alternative floor framing systems, which were designed for this report. Hand calculations were used to design the alternative floor systems. The four systems that were analyzed in this report were:

- Two-way flat slab (existing system)
- Composite beam/girder system with composite steel deck
- Two-way post-tensioned slab
- Composite joist/ steel girder system with composite steel deck

The cost of each system was determined by using a square foot estimate, which has a ±20% error, based on data obtained from R.S. Means Square Foot Costs 2010. Appendix E provides the R.S. Means charts that summarize the cost of each system. The Cost for two-way post-tensioning slabs was not found, but the cost of the system was assumed to cost the same as the two-way flat system plus the cost of tendons.

Two-Way Flat Slab (Existing System)

Figure 15 Existing system typical structural layout (left) and an enlarged layout of the interior panel used for gravity spot check analyses (right)

The four levels below grade and twelve levels above grade consist of a two-way flat slab floor system with an 8" thick slab, 8" thick drop panels and 6" thick column capitals. The parking garage ramp consists of a 14" thick slab. The 8" slab consists of #5 reinforcing bars spaced 12" on center in both the column and middle strips. This system is assembled and shored on site and formwork is used to construct the concrete slabs, columns, drop panels and column capitals.

For this technical report, gravity checks were performed on a typical interior panel and column 50 was checked on both the 1st and 5th levels. The slab panel and column used for analyses can be seen in Figure 15 outlined in blue (interior panel) and green (column 50). The hand calculations can be found in Appendix A.

General

The two-way slab system weighs 100 pounds per square foot. Based on the R.S. Means data, this system was found to cost \$17.45 per square foot, which includes cost of the material and installation.

The structural depth of this system is 8" in the slab region and 22" in the column region (which includes thickness contributed by the drop panels and column capitals). The remaining ceiling cavity towards the center of the building is used for mechanical ductwork. As a result, any additional structural depth will either require an increase in building height or a redesign of the mechanical layout. Since the building height is limited to 130 ft. by zoning and the existing structure is currently 130 ft., an alternative system that will require additional building height cannot be used with the existing 11 story structure.

Architectural

This system achieves a minimum 2 hour fire rating and since the entire structure was designed to achieve this rating, there are no additional architectural impacts to consider.

Structural

This system is supported on a shallow foundation consisting of spread footings and a slab on grade. If this system were chosen as the final design, the existing foundation system will remain unchanged.

Serviceability

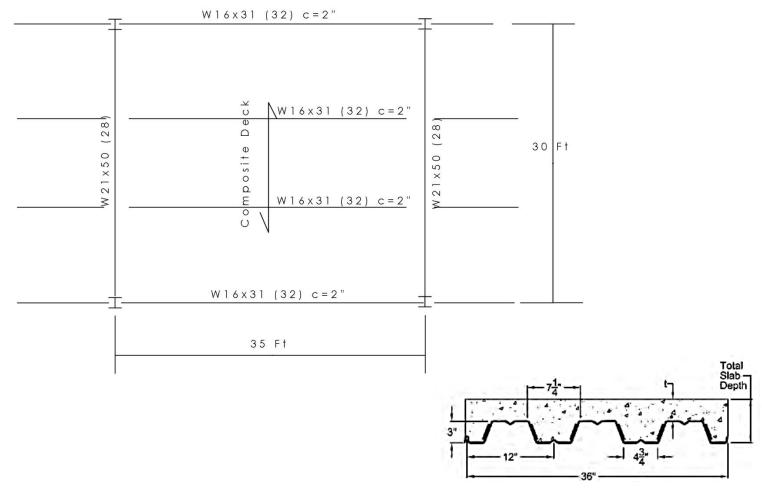
Deflections were not directly calculated for this system, instead the slab thickness was determined based on a span-to-depth ratio used in design practice and it was found that an 8" slab would be required to control deflections, which is the existing slab thickness. In addition, through research it was found that two-way concrete slabs are effective in absorbing sound thus decreasing sound transmission as well as vibration control. Therefore it is apparent that this system will not create any serviceability issues.

Construction

Additional fire proofing does not need to be provided for this system, but formwork will be required for the slab, drop panels, column capitals, and columns. In addition, the concrete will require time for curing to enable the concrete to reach its full strength. The formwork needed to construct this system along with the time required for concrete curing will increase the construction schedule. The existing concrete structural system began construction in July 2010 and was complete by March 2011. The four levels below grade plus the twelve levels above grade were completed within an 8 month period. This rapid construction may be attributed to the fact that Washington D.C. has a very competitive concrete market with many tradesmen that specialize in concrete construction, thus resulting in shorter construction time.

<u>Advantages</u>

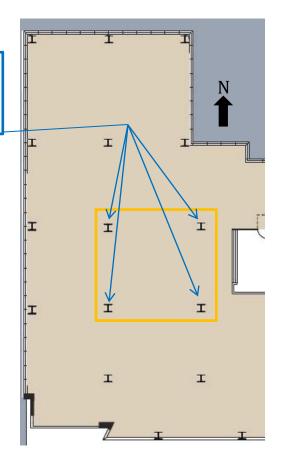
- Long spans
- Shallow structural depth thus low floor-to-floor story heights
- Simple formwork
- Protects against corrosion
- Very good vibration and sound transmission control

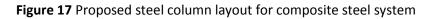

Disadvantages

- Slight increase in construction schedule due to formwork and concrete curing
- Difficult to drill through the slab core for future services
- Increase in cost due to formwork being labor intensive

Despite the fact that this system is relatively heavy, it still only requires a shallow foundation and performs well in all of the above analyzed categories. This system provides long spans with low structural depth and low floor-to-floor heights, making this system ideal for the 1000 Connecticut Avenue Office Building by providing less structural obstructions and thus more open, rentable office space.

Composite Beam and Girder Framing with Composite Steel Deck


Figure 16 Composite Steel System Layout (top left) and composite deck section taken from Vulcraft 2008 catalog (lower right)


The first system designed was a composite steel system, which was chosen because it was the more practical alternative steel system to use to span the long bays and still maintain a lower structural depth. The composite action between the steel beam/girder and slab results in an efficient system. The layout for this system can be seen in Figure 16.

The design was performed by hand calculations, which can be found in Appendix B. The Vulcraft 2008 Manual was used to specify the deck and AISC, 14th edition was used to design the steel beams and girders.

For this system, the column grid was slightly adjusted by increasing the column spacing between two interior bays by aligning the interior columns with the exterior columns (located along the perimeter of the west wall). This column spacing adjustment increased the two interior bay widths from 26' to 30' in the N-S direction. This slight change to the column grid was to create a more consistent frame layout throughout the building. The new steel column layout can be seen in Figure 17.

Interior columns adjusted to align with the exterior columns located along the perimeter of the west wall

The final design resulted in a 3VLI20 composite metal deck with a 3 span condition and a 7 $\frac{1}{2}$ " total slab thickness. To achieve a 2 hour fire assembly rating, an unprotected deck with 4 $\frac{1}{2}$ " normal concrete topping was used. A W16x31 with (32) - $\frac{3}{4}$ " shear studs and a 2" camber was chosen for the beam and a W21x50 with (28) - $\frac{3}{4}$ " shear studs was chosen for the girder.

<u>General</u>

With a 7 $\frac{1}{2}$ " total thick composite deck combined with the beams in Figure 16, this system was found to weigh 81.2 pounds per square foot and costs \$19.83 per square foot. The most important impact of this system is its structural depth increase of 23 $\frac{1}{2}$ " in the slab region due to the beams and 28 $\frac{1}{2}$ " in the slab region due to the girders. The controlling 20 $\frac{1}{2}$ " increase in the slab region will be difficult to absorb in the mechanical layout without increasing the building height or decreasing the floor-to-ceiling height.

Architectural

The steel beams, girders, and deck will need to be fire proofed with spray on fireproofing. A drop celling can be used as a ceiling finish and the additional space supplied by the drop ceiling will provide additional mechanical and electrical space.

To use this floor system and achieve an 8'-6" minimum floor-to-ceiling height, the building height will need to increase. Since 1000 Connecticut Avenue is currently 130 ft. and is located in Washington DC, which has a zoning height restriction of 130 ft., the existing structure cannot be increased in height. As a result, this system will have to be designed for a fewer number of stories to achieve high floor-to-ceiling heights and to stay within the height limit.

In addition, a steel framing system will require a uniform layout, therefore to use this system in place of the existing gravity system will require certain columns to be relocated and removed to achieve a uniform framing layout. As a result, the existing architectural layout may need to be changed to accommodate the structural system layout.

Structural

This system weight is 19% lighter than the two-way flat slab system. As a result, the existing shallow foundation can still be used. Since the vertical columns are steel, the lateral force resisting system will either consist of steel moment frames, or braced frames, or a combination of these two systems. The below grade construction will still be comprised of cast-in-place concrete, which is a better material to use for parking garages.

Serviceability

The maximum deflection of this system was calculated in this report to be 1.73" for the beams and 1.3" for the girders, which are both within the permissible limits.

A vibration analysis for this system was not performed, but if this system were chosen for further investigation, vibration analysis will have to be performed to ensure this system will be able to control vibrations throughout the structure.

Construction

To achieve a 2 hour fire rating, the steel beams, girders, and deck must be fire proofed with spray on fireproofing. Despite this, steel member erection is more rapid than cast in place concrete construction, therefore the construction schedule should be significantly reduced.

<u>Advantages</u>

- Low system weight resulting in a reduction in frame loading and foundation cost
- Composite action between the concrete slab and steel member decreases structural depth
- decrease in construction schedule
- adaptable system that can be drilled and/or cut out for service requirements
- Increase rentable space due to wider bays created by longer spans

Disadvantages

- Building height increase
- Construction cost increase due to fire proofing
- Requires columns to be relocated and removed to create a uniform framing layout

The composite beam/girder floor system increases the current structural depth to 28 ½" and requires an increase in the overall building height to achieve high floor-to-ceiling heights. Since the existing building is limited to a 130 ft., this alternative floor system cannot be used with the current 11 story structure. As a result, this system is feasible if either the building were designed for a reduced number of stories or relocated to a region that does not have a height limit.

Two-Way Post-Tension Slab

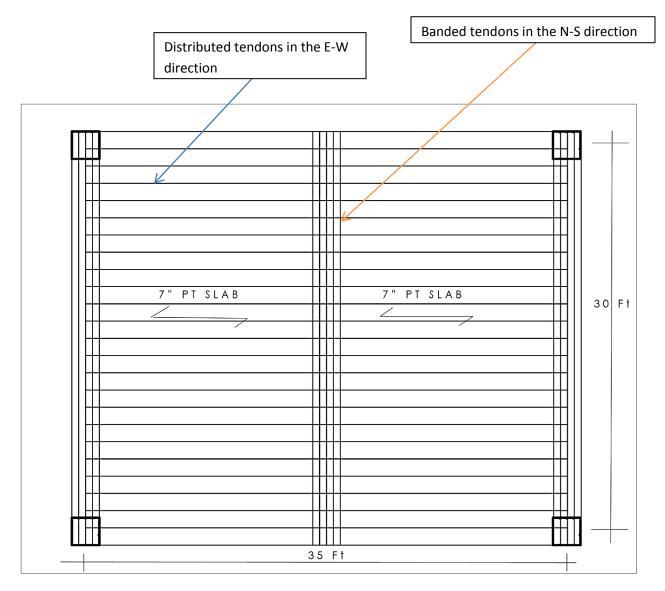


Figure 18 post-Tension tendon layout

Post-tensioning design is often used to achieve longer spans and reduce structural depth, which was particularly important for 1000 Connecticut Avenue due to the 130 ft. zoning height restriction. The design was performed by hand calculations, which can be found In Appendix C. An example by the Portland Cement Association (PCA) was used as a design reference. The post-tensioned slab layout can be seen in Figure 18.

Two interior equivalent frames were chosen for design to determine whether this system would be viable. 5 spans were designed in the N-S direction and 4 spans were designed in the E-W direction. The two equivalent frames chosen for design can be seen highlighted in green in Figure 19.

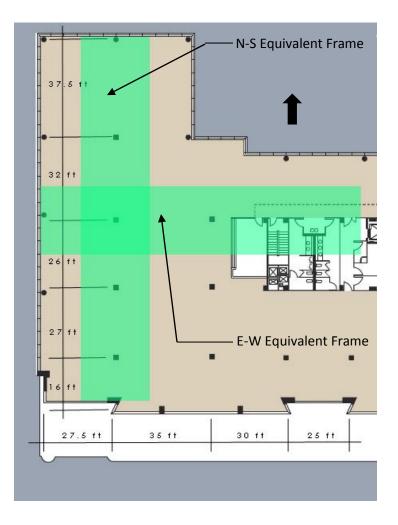


Figure 19 Equivalent frames chosen for PT design highlighted in green

The final design resulted in a 7" thick slab with 3" thick drop panels and (26) - $\frac{1}{2}$ " ϕ 7-wire unbounded tendons in the N-S (banded) direction and (18) - $\frac{1}{2}$ " ϕ 7-wire unbounded tendons in the E-W (distributed) direction.

<u>General</u>

This system weighs 87.5 pounds per square foot, which is 12.5% lighter than the existing two-way slab system, and costs \$17.45 (not including post-tensioning material). The structural depth in the slab region decreases to 7" and the structural depth in the column region decreases to 3". Due to the slight decrease in structural depth in the slab region, both the floor-to-ceiling height and existing overall building height will be unaffected.

Architectural

This system achieves a 2 hour fire resistance rating from cover requirements on the reinforcing. If this system were used, the existing structural layout can remain the same and therefore the current architecture layout will be unaffected. Further, despite to the slight decrease in the slab system, the existing floor-to-ceiling height will remain the same.

Structural

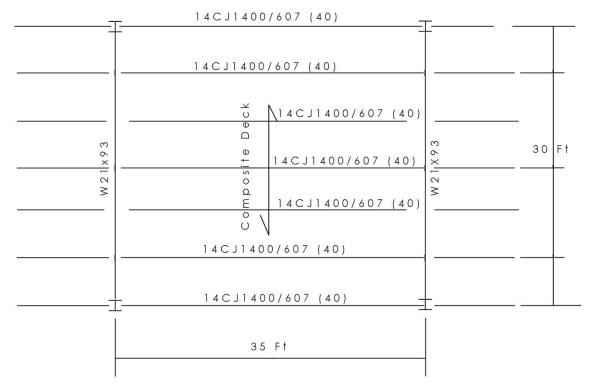
Since this system weighs less than the existing two-way flat slab system, the foundation will be unaffected. The lateral load system will remain the same as the existing lateral system; a concrete moment frame consisting of the concrete columns and slab. Thus if this system were chosen for further investigation, lateral loads will have to be considered for designing the slab. The below grade construction will still consist of cast-in-place concrete, with the possibility of using post-tensioned slabs for the underground four level parking garage and slab on grade.

Serviceability

Deflections were not directly calculated for this system, but they were limited by acceptable span-todepth ratios from industry practice outlined in the Portland Cement Association example, which was used to assist in designing the slab. In addition, through research it was found that post-tensioned slabs are effective in decreasing sound transmission and providing vibration control, thus it is likely this system will not have any serviceability issues.

Construction

Additional fire proofing does not need to be provided for this system, but formwork will be required for the slab, drop panels, and columns. The construction time for this system may potentially lengthen due to the fact that specialized tradesmen familiar with post-tensioning will be required to construct this slab system productively and successfully.


Advantages

- Longer spans achieved with thinner slab depths
- low structural depth
- Reduced deflection due to service loads
- Good crack control
- High punching shear strength obtainable through appropriate tendon layout
- Increased design flexibility without the need for transverse or longitudinal beams for irregular building geometries
- Lighter system weight

Disadvantages

- May lengthen construction schedule
- Difficult to drill through slab due to tendons
- Additional construction difficulty due to post-tensioning requirements

This system weighs less than the existing two-way flat slab system, as a result the foundation will be unaffected. This system provides long spans with low structural depth and low floor-to-floor heights, making this system ideal for the 1000 Connecticut Avenue Office Building by providing less structural obstructions and thus more open, rentable office space. Therefore this system merits further investigation.

Composite Joist/ Steel Girder System

Figure 20 composite joist/steel girder layout

The last system designed was a composite steel joist system, which was chosen to span long distances while maintaining a low floor-to-floor building height and to reduce overall system weight. The composite action between the steel joist and slab results in an efficient system with reduced live load deflections. The layout for this system can be seen in Figure 20.

The design was performed by hand calculations, which can be found in Appendix D. The Vulcraft 2008 Steel Roof and Floor Deck Catalog was used to specify the deck, Vulcraft 2009 Composite and Non-Composite Floor Joists Catalog was used to specify the composite joist and AISC, 14th edition was used to design the steel girders.

Since it's more efficient and less expensive for steel frames to have a uniform framing layout, the column grid was slightly adjusted by increasing the column spacing between two interior bays by aligning the interior columns with the exterior columns. This slight change to the column grid was to create a more consistent frame layout throughout the building. The new steel column layout can be seen in Figure 17.

The final design resulted in a 1.5VLI22 composite metal deck with a 3 span condition and a 6" total slab thickness. To achieve a 2 hour fire assembly rating, an unprotected deck with 4 ½" normal concrete

topping was used. A 14CJ1400/607 with (40) - $\frac{5}{2}$ ϕ shear studs was chosen for the composite joist and a W21x93 was chosen for the girder.

<u>General</u>

With a 6" total thick composite deck combined with the joists in Figure 20, this system was found to weigh 85 lbs. per square foot and costs \$22.05 per square foot. The joist has a depth of 14" and the girder has a 21.6" depth. This 19.6" increase in structural depth in the slab region will require an increase in building height to maintain a minimum 8'-6" floor-to-ceiling height.

Architectural

The steel joists, girders, and deck will need to be fire proofed with spray on fireproofing to achieve a 2 hour fire rating. A drop celling can be used as a ceiling finish and the open webs can be used as raceways for mechanical ducts and piping, which will reduce the amount of space needed in the ceiling cavity.

To use this floor system and achieve an 8'-6" minimum floor-to-ceiling height, the building height will need to increase. Due to 1000 Connecticut Avenue having a restricted 130 ft. height limit, the existing structure will not be able to increase to accommodate for the additional height needed to maintain high floor-to-ceiling heights. As a result, this system will have to be designed for a fewer number of stories to stay within the height limit.

In addition, a steel framing system will require a uniform layout, therefore to use this system in place of the existing gravity system will require certain columns to be relocated and removed to achieve a uniform framing layout. As a result, the existing architectural layout may need to be rearranged to accommodate the new structural system layout.

Structural

This system weight is 15% lighter than the two-way flat slab system. As a result, the existing shallow foundation can still be used. Since the vertical columns are steel, the lateral force resisting system will either consist of steel moment frames or braced frames. The levels below grade will remain constructed of cast-in-place concrete.

Serviceability

The deflection of this system was calculated in this report to be 1.66" for the joists and 1.35" for the girders, which are both within the permissible limits.

Construction

To achieve a 2 hour fire rating, the joists, girders, and deck must be fire proofed with spray on fireproofing. Despite this, steel joist erection is more rapid and efficient than cast in place concrete construction, therefore the construction schedule should be significantly reduced.

Advantages

- Potential reduction in construction schedule due to simply erection
- Shallow structural depth in the slab region
- Reduced structural weight
- Open webs can be used as raceways for mechanical and electrical pipes
- Increase rentable space due to wider bays created by longer spans

Disadvantages

- Lightweight floor system prone to vibration
- Increase in construction cost due to required fire proofing
- Requires uniform column framing layout

The composite joist/steel girder floor system increases the current structural depth to 27.6" and requires an increase in the overall building height to achieve high floor-to-ceiling heights. Since the existing building is limited to a 130 ft. height, this alternative floor system cannot be used with the existing 11 story structure. As a result, this system is feasible if either the building were designed for a reduced number of stories or relocated to a region that does not have a height limit.

Floor System Summary

Table 5 summarizes the results that were discussed in this technical report.

Consi	deration			System	
		Two-Way Flat Slab	Composite Steel Beam/Girder	Post-Tensioned Concrete Slab	Composite Steel joist/ Steel Girder
General	Weight (psf)	100	81.2	87.5	85
	Cost (\$/SF)	17.45	19.83	17.45 + Post- tensioning	22.05
	Floor Depth (inches)	8 slab/8 drop panel	7.5 slab/ 21 girder	7 slab/3 drop panel	6 slab/ 21.6 girder
Architectural	Fire rating (hour)	2	2	2	2
	Other impacts	N/A	20.5" increase in structural depth; beams, girders, and deck must be fireproofed	Under side of slab Can be left exposed as a finishing; 5" decrease in column region	19.6" increase in structural depth; joists, girders, and deck must be fireproofed
Structural	Foundation Impact	Existing shallow foundation with spread footings and strap beams	May not impact foundation	May not impact foundation	May not impact foundation
	Lateral System Impact	Existing concrete moment frame	Steel moment/ braced frames	Concrete moment frame consisting of slab and columns	Steel moment/ steel braced frames
Serviceability	Maximum Deflection (inches)	N/A	1.73 beams/1.3 girders	N/A	1.66 joists/1.35 girders
	Vibration Control	Very Good	Average	Very Good	average
Construction	Additional Fire Protection Required	None	Spray on fireproofing for beams, girders and deck	None	Spray on fireproofing for joists, girders, and deck
	Schedule Impact	N/A	May reduce construction schedule	May reduce construction schedule	May reduce construction schedule
	Constructability	Moderate	Easy	Moderate	Easy
	Feasibility	Yes	Yes	Yes	Yes

 Table 5 Floor System summary chart

Conclusion

This technical report further investigated the existing structural system by spot checking existing structural members as well as designing three alternative floor framing systems to determine which alternative system would be most viable. Each system was compared based on the following criteria:

- Architecture (fire rating and other impacts);
- Structural (foundation and lateral system impacts);
- Serviceability (maximum system deflection, vibration control and sound transmission);
- Construction (additional fire protection and schedule impact)

For the existing system, spot checks were performed for an interior flat slab panel and an interior column. Spot checks performed on a typical interior flat slab panel showed that the analysis simplifications resulted in a conservative slab design, which can be explained through both simplifying and dead load assumptions. On the other hand, the interior column spot check showed that the preliminary designed cross sections for levels 1 and 5 were very close to the existing cross-sections.

The three alternative systems designed for this tech report were:

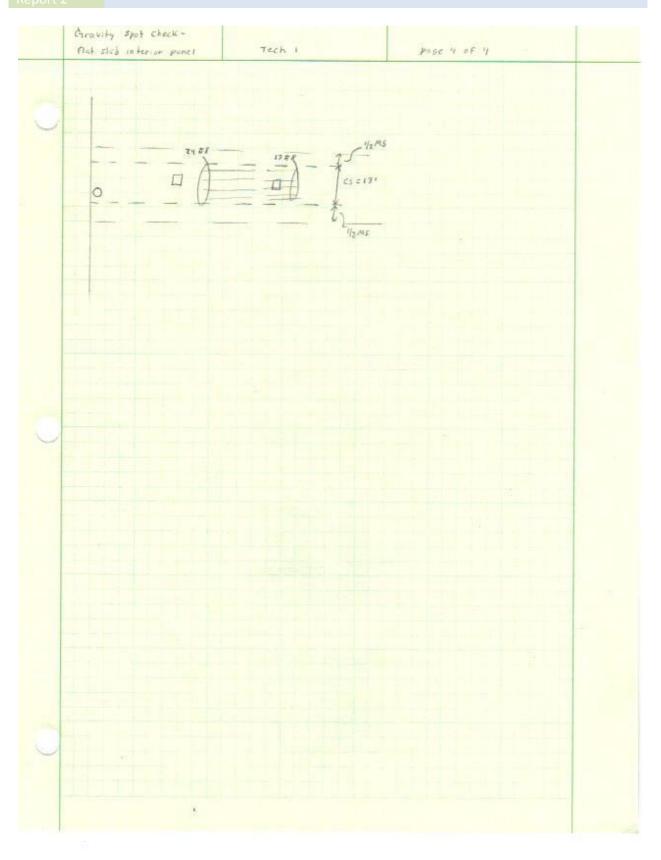

- Composite beam/girder system with composite steel deck
- Two-way post-tensioned slab
- Composite joist/steel girder system with composite steel deck

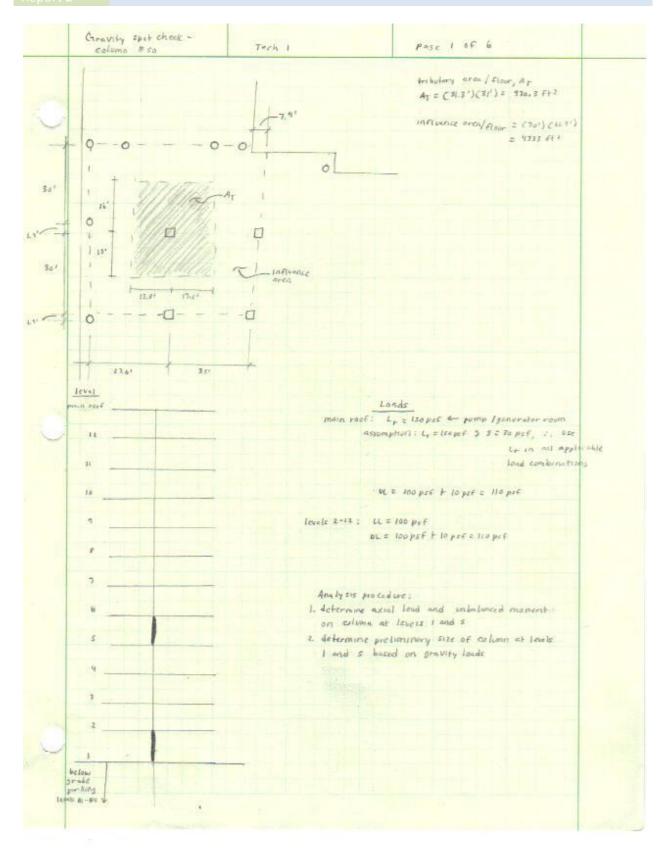
The final design of the alternative floor systems resulted in the following:

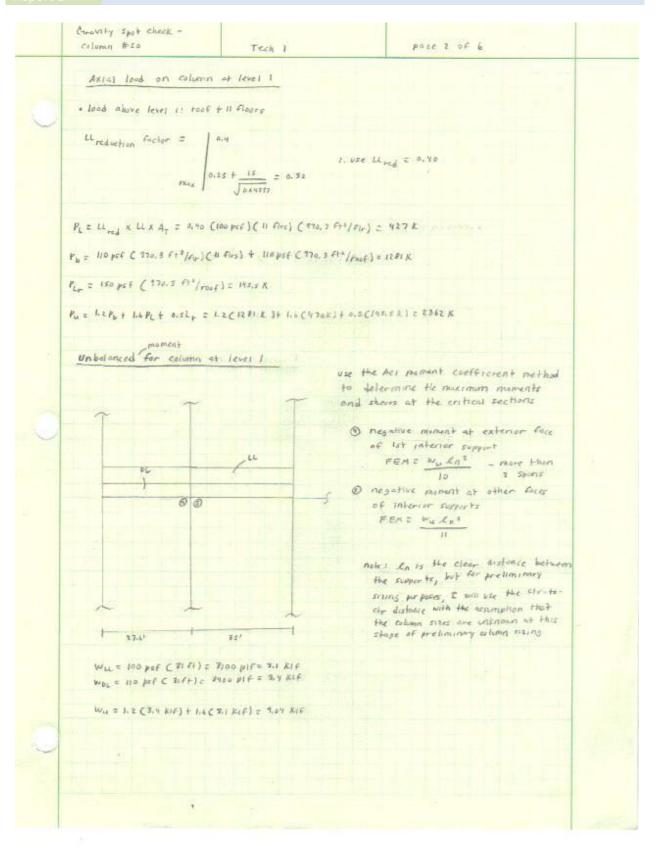
- Two-way flat slab system: 8" thick slab with 8" thick drop panels
- Composite steel beam/girder system: a W16x31 beam with (32)- ¾" φ shear studs and a 2" camber and a W21x50 girder with (28)- ¾" φ shear studs
- Two-way post-tension slab: 7" thick slab with 3" thick drop panels and (26) ½" φ 7-wire unbounded tendons in the N-S (banded) direction and (18) ½" φ 7-wire unbounded tendons in the E-W (distributed) direction.
- Composite joist/steel girder system: 14CJ1400/607 composite joist with (40)-%" φ shear studs and a W21x93 girder

After designing each system and using the above criteria for system comparison, it was found that all 3 alternative systems were viable and will be further investigated to determine which one would be the better floor framing alternative.

Appendix A: Existing System Gravity Load Calculations

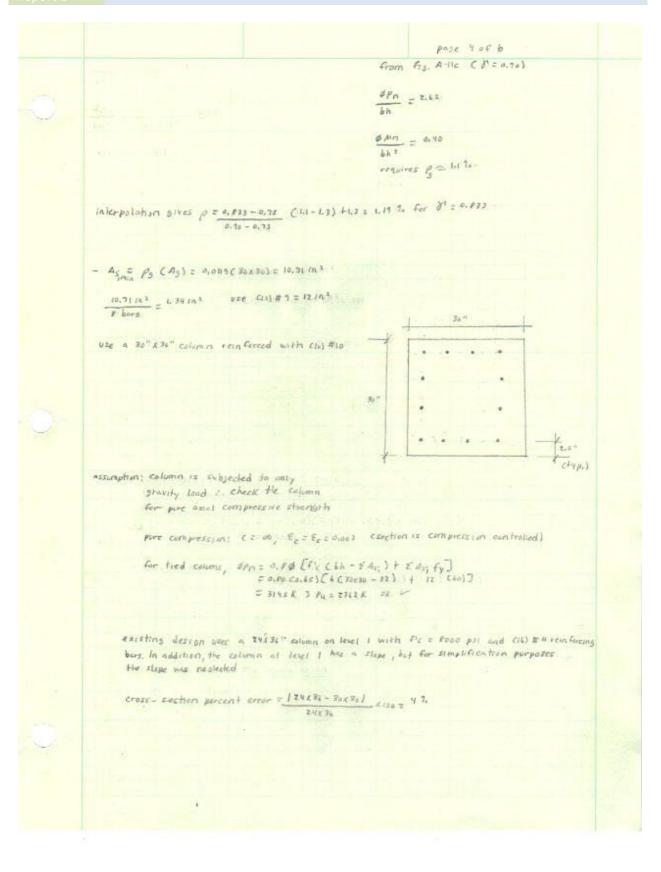


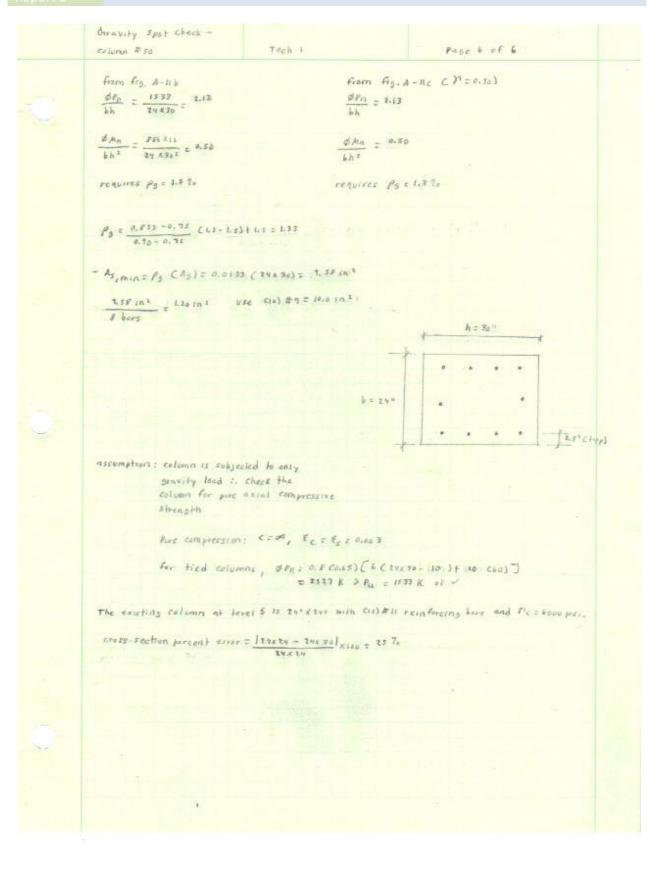

October 23, 2011

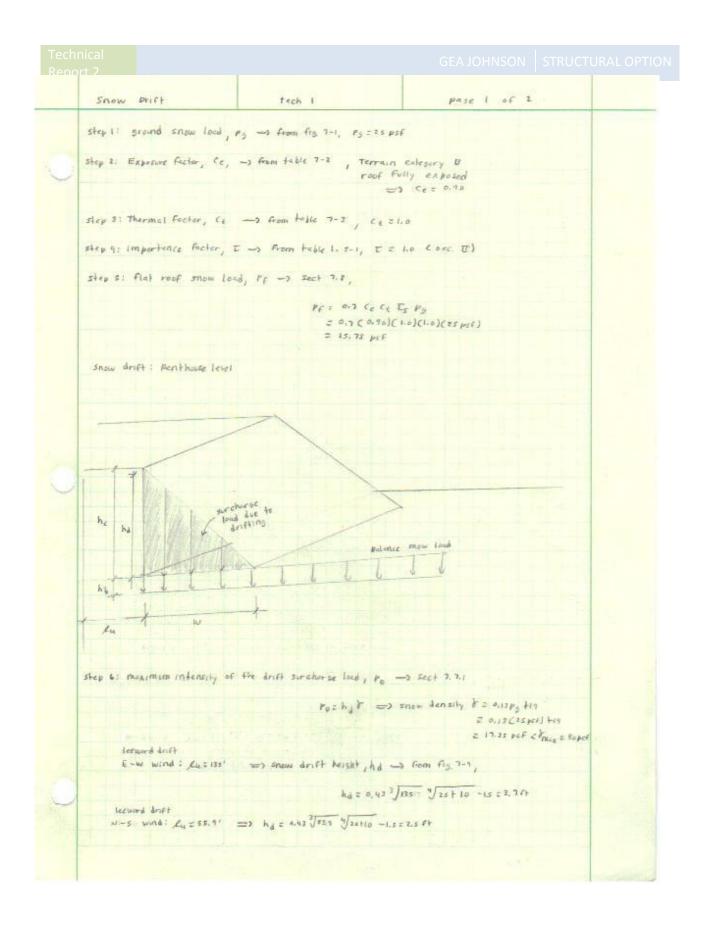

	or princel	Tech 1	page 2 of 4	
		arvel (1		
- total load				
deed :				_
		1 ft)= 137.5 psf		
Spl z	to pst			_
live los	d - 100 prf			
		f + 1.6Clospsf)= 337 psf		
- Maz Wal	2 ln2 - 1	(377 psf)(uft)(33 ft)t	= 11938-84	_
8	P	and the second		2
- distribute ,	A. longitudi	nally using Acl pured bes	isn moment coefficients, such 13,6,	\$.2
	6. I . M	: = 4(2, ± €+		
	0,25/4,82	4.45M+2		
	- 775 8.67	-75864		
	1			
	Interio	or .		
	1 (201) (Law)			
- Honsverse di	span stribution of	: moments on column strip	-> from Act Sect 13,4,4	
percen	stribution of tase of long according to	itudina mament soins to co ment cinterior support <u>Al</u> z zo Cno longi	u, strip	
percen	stribution of tase of long according to	itudinal mamerit going to co	u, strip	
percen	strubution of acceleration $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$	itudina mament going to co ment cinterior support $\frac{dL_2}{d_1} \ge 0$ Cas long:	u, strip	
percen	stribution of tage of long acciding ma $=\frac{74}{35}=0.79$	Hudinal mament soins is coment einterior support $\frac{AL_2}{L_1} = 0 Cno long:$ Here	u, strip	
percen	stribution of tage of long acciding ma $=\frac{74}{3s}=0.79$ $a_{r,s}$	Hudinal mament going is coment einterior support $\frac{dL_2}{d_1} = 0 Cno long:$ Fill, o, 74 I. 0	u, strip	
percen L ₂ L ₄	stribution of tage of long acciding ma $=\frac{74}{35}=0.79$	Hudinal mament soins is coment einterior support $\frac{AL_2}{L_1} = 0 Cno long:$ Here	u, strip	
percen L ₂ L ₁	stribution of tage of long acciding ma $=\frac{74}{3s}=0.79$ $a_{r,s}$	Hudinal mament going is coment einterior support $\frac{dL_2}{d_1} = 0 Cno long:$ Fill, o, 74 I. 0	u, strip	
percen L ₂ L ₁ L ₁	stribution of lease of long acciding ma $=\frac{7k}{3s} = 0.74$ d, s d, s 75	Hudinal mament soins is coment C interior support $\frac{dL_2}{d_1} \ge 0$ Cno long: $\frac{dL_1}{d_1}$ $\frac{dL_2}{d_1} \ge 0$ Cno long: $\frac{dL_2}{d_1}$ $\frac{dL_2}{d_2} \ge 0$ Cno long: $\frac{dL_2}{d_1}$ $\frac{dL_2}{d_2} \ge 0$ Cno long: $\frac{dL_2}{d_1} \ge 0$ Cno long: $\frac{dL_2}{d_2} \ge 0$ Cno long:	u, strip	
percen L ₂ L ₁ L ₁	stribution of lease of long acciding ma $=\frac{7k}{3s} = 0.74$ d, s d, s 75	Hudinal mament going is coment einterior support $\frac{dL_2}{d_1} = 0 Cno long:$ Fill, o, 74 I. 0	u, strip	
percen $\frac{l_2}{l_1}$ $\frac{s_1 l_2}{l_1}$ $-755 l_2$	stribution of negative ma $z \frac{74}{35} = 0.74$ d. 0.5 75 Ff - 752	itudinai asment soing to co ment Eintener support $\frac{dL_2}{d_1} \ge 0$ Cno long: $\frac{dL_3}{d_1}$ 5.12 0,74 1.0 75 75 a to col. strip = 581.3 kft	u, strip	
percen $\frac{l_2}{l_1}$ $\frac{s_1 l_2}{l_1}$ $-755 l_2$	stribution of lease of long acciding ma $=\frac{7k}{3s}=0.74$ d, s d, s 75	itudinai asment soing to co ment Eintener support $\frac{dL_2}{d_1} \ge 0$ Cno long: $\frac{dL_3}{d_1}$ 5.12 0,74 1.0 75 75 a to col. strip = 581.3 kft	u, strip	
percen $\frac{l_2}{l_1}$ $\frac{d_2}{d_1}$ -775μ	stribution of acceptions as acceptions as acceptions as acceptions accept	Hudinal mament soins to co ment Cinterer support $\frac{dL_2}{d_1} = 0$ Cno long: $\frac{dL_3}{d_1}$ 5.74 1.0 75 73 a to col. strip = 581.3 kft	u, strip	
percen $\frac{l_2}{l_1}$ $\frac{d_2}{d_1}$ -775μ	stribution of negative ma $z \frac{74}{35} = 0.74$ d. 0.5 75 Ff - 752	Hudinal mament soins to co ment Cinterer support $\frac{dL_2}{d_1} = 0$ Cno long: $\frac{dL_3}{d_1}$ 5.74 1.0 75 73 a to col. strip = 581.3 kft	u, strip	
percen $\frac{l_{\lambda}}{L_{1}}$ $\frac{d_{\lambda}}{d_{1}}$ -775 l $\frac{l_{\lambda}}{L_{1}}$	stribution of accepting ma $\frac{1}{35} = \frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ \frac	Hudinal associations to compare the surface surport $\frac{dL_2}{d_1} = 0 Cons \ long:$ $\frac{dL_3}{d_1} = 0 Cons \ long:$ $\frac{dL_4}{d_1} = 0 Cons \ long:$ $\frac{dL_5}{d_1} = 0 Cons \ long:$	u, strip	
percen $\frac{l_{\lambda}}{L_{1}}$ $\frac{d_{\lambda}}{d_{1}}$ -775 l $\frac{l_{\lambda}}{L_{1}}$	stribution of accepting ma $\frac{1}{35} = \frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ $\frac{1}{35} = \frac{1}{35}$ \frac	Hudinal associations to compare the surface surport $\frac{dL_2}{d_1} = 0 Cons \ long:$ $\frac{dL_3}{d_1} = 0 Cons \ long:$ $\frac{dL_4}{d_1} = 0 Cons \ long:$ $\frac{dL_5}{d_1} = 0 Cons \ long:$	u, strip	
percen L ₂ L ₁ d L ₁ d L ₁ r r L ₁ r r r r r r r r r r r r r	stribution of $\frac{1}{100} = 0$ flog $\frac{1}{100} = 0$ flog $\frac{1}{100} = 0.74$ $\frac{1}{100} = 0.74$ $\frac{1}{$	Hudinal associat soing to compare Eintener Support $\frac{dL_2}{d_1} = 0$ Can long: $\frac{dL_3}{d_1} = 0$ Can long: $\frac{dL_4}{d_1} = 0$ Can long: $\frac{dL_4}{d_1} = 0$ Can long: $\frac{dL_4}{d_1} = 0$ Can long: $\frac{dL_5}{d_1} = 0$ Can long: $\frac{dL_6}{d_1} = 0$ Can long: $\frac{dL_6}{d_2} = 0$ Can long: $\frac{dL_6}{d_1} = 0$ Can long: $\frac{dL_6}{d_2} = 0$ Can long: $\frac{dL_6}{d_1} = 0$ Can long: $\frac{dL_6}{d_2} = 0$ Can long: $\frac{dL_6}{d_1} = 0$ Can long: Can long: Can long: Can long: Can long: Can long: Can long: Can long: Ca	u, strip	
percen L ₂ L ₁ d L ₁ d L ₁ r r L ₁ r r r r r r r r r r r r r	stribution of $\frac{1}{100} = 0$ flog $\frac{1}{100} = 0$ flog $\frac{1}{100} = 0.74$ $\frac{1}{100} = 0.74$ $\frac{1}{$	Hudinal associations to compare the surface surport $\frac{dL_2}{d_1} = 0 Cons \ long:$ $\frac{dL_3}{d_1} = 0 Cons \ long:$ $\frac{dL_4}{d_1} = 0 Cons \ long:$ $\frac{dL_5}{d_1} = 0 Cons \ long:$	u, strip	

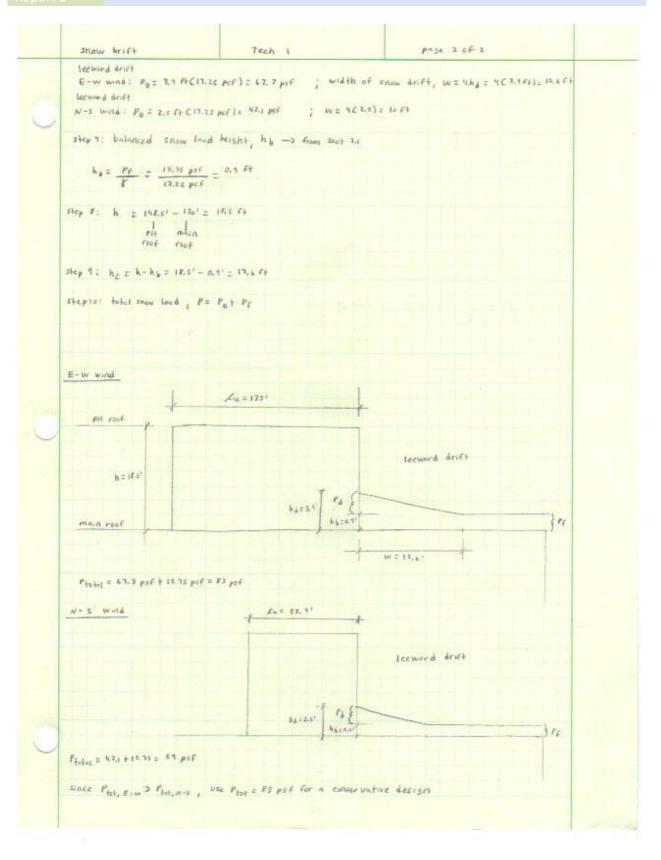
	Caravity Spet a		tank i		1000 B 100 B	
_	flat slab interi	ar ponti	tech 1		pase 3 + F 4	
	step 3: reinfor	rcement des	isn of ealumn stop in i	nterior ponel		
	item na.		description	inte	rior Sport	
4				Mu-	Aut	
	1.		Au (K-f+)	-775	+ 417.6	
	٤.		width of strip, b cin)	156.11	121	
	3		effective depth, d Cin) H = 0.75 = 0.5(0.021) T = 7 E = class - result, #3 bet thin,	2.94 *	7.99*	
	¥.		$A_n = \frac{A_{in}}{a_i 5} (r - F+)$	- F 61	444	
	\$		$g = \frac{M_n}{kd^{\frac{n}{2}}} (p_{x_i})$	670	361	
			= An x 12000			
			156 " (7, 94")"			
	L		$ \begin{aligned} \rho & \text{from hole A-3 in} \\ \text{Reign forced concrete, $th} \\ \text{edit} \\ \text{from interpolation,} \\ P &= \left(\frac{k-\mu_1}{R_1-k_1}\right) C f_2 - \rho_1 \right) + \rho_1 \end{aligned} $	0,0121	0.0462	
	٦.		$A_{5} = pbd C(n=) \\ = p(C(15h)(C(1)))$	18, 52	4, 73	
	E.		As, min = 0.00 (16) = 0.004 (151)(11)	3,1	3,1	
			N = <u>Isrger of Jert</u> 0.31 7 #s bor	41	31.5 2 32	
	10.	A	min = width of strip	7,=9 ≣ 8	1	
			= <u>156</u> 3603 (1990)			
		bar size				
11.1			to resist the positive man , use NS 18.92 = 24 b		ddle of the millionar	
1	+=		the regarine moment at		Vie N= 177 = 12	burs

Technical Report 2

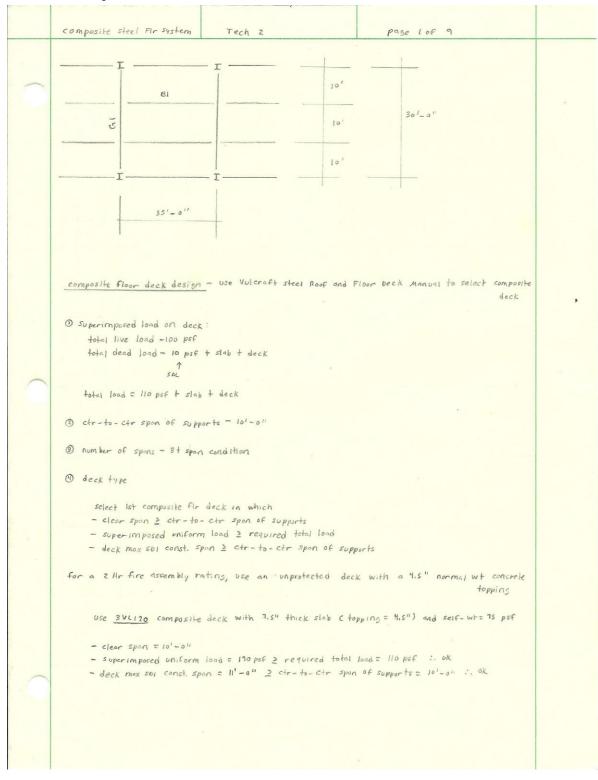



col	unn # 50	Tech 1	page 3 of 6	
-	etti apet eni enteretti etti			
	= 9.04 8	$\frac{if\left(\frac{1.7,s+72}{2}\right)^2}{10} z \text{PFs} \text{Eff}$		
123	left of support	10		
				0
Au	right of support = 1.04 ((\$1.3)2 - 805 KG+		
		15		
01	re muz pro kfr to be	concervative		
22-	a han and a state of the	Pro la contra da l		
m	eliminary column size	tor iciti i		-
	and the second H. Ferr	es , fic = 1000 ps; and fy:		
- 27.	saure and an objection	a la careera bay and all	60 KE	
1	= Au PELCIL	4.5"		
	$\frac{z}{\rho_{u}} = \frac{A_{u}}{\rho_{u}} = \frac{\rho_{Fb} z_{11}}{2362} z$			
4.5	sume d'= 2.5"	8" = <u>h - 2d</u>		
		6		
- 5	et target reinforcement	ratio to about Po = 27, = 0.0	3	13 I T 13
	h P			
	21 0.7			
	24 0.7			
	31 0.81			
4554	metions its enable use	of design and interaction	dusarions for determining	the
		column size for level 1, use		
		in place of the existing		
	strength of fi	c = Foco pri		
- 45		unforced Concrete ! Meehani	es end besign, sth edit	sea,
	for 1 = 9,75, 89 =	0.03 and \$/A = 0.17		
	they do	Company has a dea	2362 814 (* 1-)	
	bb = 2.7	for which $b \cdot h = \frac{d^2 n}{2 \cdot n} =$	29	
			28.5" -> try 30"x 74" celu	0n
		= /0-4 *		22.03
4	from fig, A-11b			
	610 - 2367 - 2.62			
	bh 30280			
Ø	Mn = 886 x12 = 0.40			
b	h 2 30x 301			Tel Link
-				
re	luires p5 = 1.3 %			a after
				and and a second second
	-12			

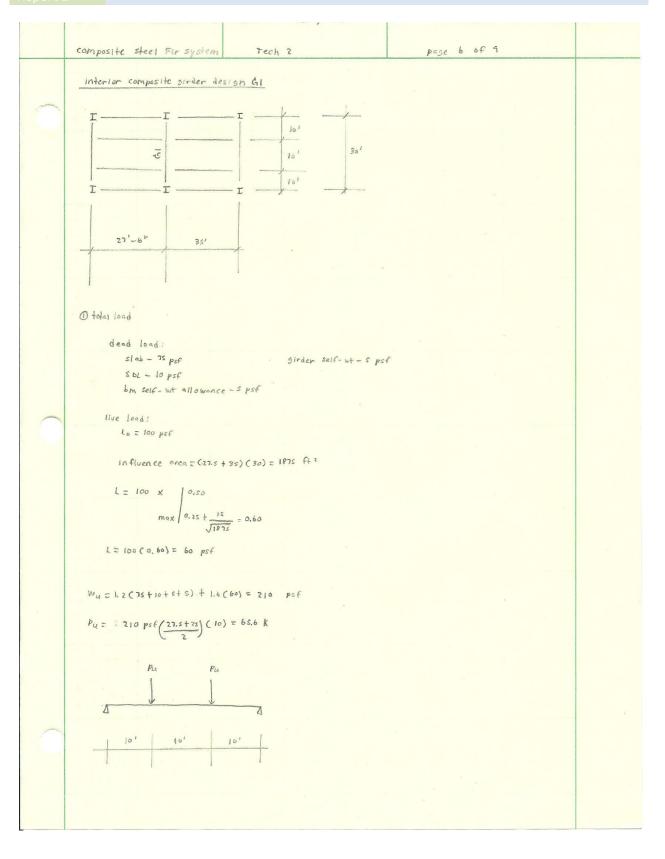




Report 2	


	Gravity spot check -			
	column # sa	Tech I	pase sof 6	
	Aarel lond on calumn at le	461 5		
	+ land above level 5: roof + 7	flours		
-				
	li reduct. factor = 0.4	10		
			0.40	
	than 1	+ 15 = 0,336 .		
	PL = 4.46 (100 psf) (7 fles) (170,3 ft2/fir 1 = 272		
	P = 110 met (770 3 62210 V	2 firs) + 110 psf (170. 3 ft / 100.	A Rep K	
	ry = no per Came are trait	1 + 1/2] T 11 3 95 + C + 1/2 3 +1 - //2041	() = \$34 K	
	PLr = 150 psf (170, 2 f42/rook	() = 148.5 K		
		and the second second		
	Pie = 12 (854) + 116 (272) + 015	(115,5) = 1533 /C		
	Unbalanced Moment for colu	ing at level 5		
		and the second second		
	- Same as Ubin for ca	iuma at level 1 Crefer to po.	2.3	-
	Freliminary Column size For	level 5		
				_
1	assume bors are not 4 free	is, fic = 6000 psi and fit to	k=1	
	e= Au BEEXIZ	. 94 "		
	$e = \frac{A_{14}}{P_{14}} = \frac{B_{55} \times 12}{1533} = 1$			
	-			
	$\frac{\overline{P_{l_4}}}{4533} = \frac{1533}{7}$ assume $d' = z_c z^{\mu}$			
	assume d'= zes =			
	assume d'= zes = set torset reinfocement m	ntra fo ps = 9103		
	assume d'= z.s." set torset reinforcement m h N ¹	-110 fo β ₂ = 9083 «I _h		
	assume $d' = z_{c,s}$ set forset reinforcement m h γ^{1} z_{2} = 0.773	ntra fo ps = 9103		1.1.2
	assume $d' = z_{c,s}$ set torset reinforcement m h γ^{1} z_{2} = z_{c} z_{3} z_{4} = 4, 252	-110 fo β ₂ = 9183 «/ _h φ,315		
	assume $d' = z_{c,s}$ set torset reinforcement r h γ^{1} z_{2} = z_{c} z_{3} z_{4} = d_{c} z_{3}	-110 fo β ₂ = θiβ 2 «/ _h φ, 315 φ, 285		N
	assume $d^{1} = 2_{1} z^{n}$ set tarset reinforcement r h γ^{1} $2z^{n} = 0.723$ $2u^{n} = 0.723$ $3u^{n} = 0.833$ $3u^{n} = 0.841$	atra ta ps = 0.03 «I/h 0,315 0,221 0,153		
	assume $d' = z_{1,2}$ set tarset reinforcement ri h γ^{1} z_{1} $a, 773$ z_{4} $a, 713$ z_{6} $o, 733$ γ_{1} o, f_{24} - using fig. A-NA from Re	etta ta ps = 0.03 eth 0.315 0.221 0.153 unforced concrete: prochemice	and besign, sth edition,	
	assume $d' = z_{1,2}$ set tarset reinforcement r h γ^{1} $z_{2} = 0.773$ $z_{4} = 0.773$ $z_{6} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{2} = 0.833$ $z_{3} = 0.933$ $z_{3} = 0.933$	while to $p_{3} = 0.03$ 0.315 0.221 0.133 inforced concrete: prochemics and $i_{fh} \simeq 1.81$ -3 Calcorage of	if «/h values above)	
	assume $d' = z_{1,2}$ set tarset reinforcement r h γ^{1} $z_{2} = 0.773$ $z_{4} = 0.773$ $z_{6} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{2} = 0.833$ $z_{3} = 0.933$ $z_{3} = 0.933$	while to $p_{3} = 0.03$ 0.315 0.221 0.133 inforced concrete: prochemics and $i_{fh} \simeq 1.81$ -3 Calcorage of	if «/h values above)	
	assume $d' = z_{1,2}$ set tarset reinforcement r h γ^{1} $z_{2} = 0.773$ $z_{4} = 0.773$ $z_{6} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{2} = 0.833$ $z_{3} = 0.933$ $z_{3} = 0.933$	which $kh \in \frac{1522}{2\sqrt{p}} = 547.5.7$	of eth values above)	
	assume $d' = z_{1,2}$ set tarset reinforcement r h γ^{1} $z_{2} = 0.773$ $z_{4} = 0.773$ $z_{6} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{2} = 0.833$ $z_{3} = 0.933$ $z_{3} = 0.933$	which $kh \in \frac{1522}{2\sqrt{p}} = 547.5.7$	if «/h values above)	
	assume $d' = z_{1,2}$ set tarset reinforcement r h γ^{1} $z_{2} = 0.773$ $z_{4} = 0.773$ $z_{6} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{2} = 0.833$ $z_{3} = 0.933$ $z_{3} = 0.933$	which $kh \in \frac{1522}{2\sqrt{p}} = 547.5.7$	of eth values above)	
	assume $d' = z_{1,2}$ set tarset reinforcement r h γ^{1} $z_{2} = 0.773$ $z_{4} = 0.773$ $z_{6} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{2} = 0.833$ $z_{3} = 0.933$ $z_{3} = 0.933$	which $kh \in \frac{1522}{2\sqrt{p}} = 547.5.7$	of eth values above)	
	assume $d' = z_{1,2}$ set tarset reinforcement r h γ^{1} $z_{2} = 0.773$ $z_{4} = 0.773$ $z_{6} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{1} = 0.833$ $z_{2} = 0.833$ $z_{3} = 0.933$ $z_{3} = 0.933$	which $kh \in \frac{1522}{2\sqrt{p}} = 547.5.7$	of eth values above)	

Appendix B: Alternative 1 – Composite Steel Floor System with Composite Deck

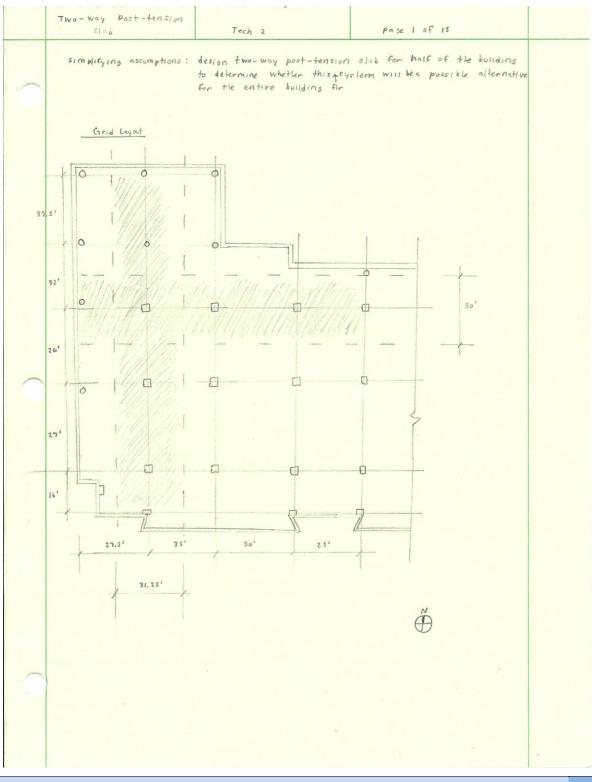


		,							
	composite steel Fir system	Tech 2	pase 2 of 9						
	Interior composite beam desis	in Bl							
	1) total load								
	dead load :								
	SOL - 10 psf								
	slab - 75 psf								
	W & = CIO PSE + 75 PSE) CIO F+) = 850 PIE								
	live load:								
	Loz 100 psf								
	-a 2 100 psp								
	Influence area = KLL AT ;	= 2 (10 ft) (3s ft) = 700 ft 2 > 4	100 Ftz must reduce live load						
	LE 100 x 0.5								
	LE 100 × 0.25 + 1 max 0.25 + 1	5 = 0, 617							
	L= 100 (0, 817)= 81,7 psf								
	WL = 81.7 psf (10ft) = 817	plf							
~									
	(required moment for the	composite beam -> assume be	com is simply supported						
		-> add s psf	for bon self- wt						
	Wu = 1.2 (S psf) (10 f+) + 1. = 2387 plf	2 (850 p) f 1.6 (817 p)()							
	Mu = Wu L2 = 2387 pif (3	5ft)2 365,509 16-ft = 366 Kf	$V_{U} = \frac{W_{U}L}{2} = \frac{2.387 \text{ kif } (35 \text{ ft})}{2} = 41.8 \text{ k}$						
	P &		ζ 2						
	3) the starting moment and	n for the concrete from the .	top of the sterl						
		t=7.5" af f							
	assume as ho in	C- " - James	V VVV + Y2						
		4							
	$Y_{2} = t - \frac{q}{2} = 7, s - 1$	= ⁷ in							
-									

1	composite steel Fir System	Tech 2	pase 3 of 9	
	(9) determine the lower bound	inertia (TLE) based on All, me	, and ATL, max	
	$\Delta_{LL_1,Max} = \frac{L}{360} = \frac{35C(2)}{360} =$			
	$\Delta_{LL} = \frac{SW_L L^4 C(128)}{389 \text{ fr} L_{LR}} \implies 3$	$L_{B_{j}}min = \frac{SW_{L}L^{4}Cin2s}{384 E \Delta_{LL_{j}}max} = \frac{SC}{3}$	0, 817) (35) 4 (1728) = 813 10 4 384 (29000) (1.17)	
	ATL, Max = L = 35C12) =	1.756		
	ATL = 5WTLL4 (1728) =>	$E_{Le_{j}}min = \frac{S(0, 817 + 0.856)(35)}{384(21000)(1.75)}$	5) = 1109 In4	Res
	(3) select potential w- shapes	from tables 3-19 and 3-20 m	steel monual	
		rs with $p Mn 2$ 366 Kft and I		
	w 14x30 , ILB = 1150 10 4	, ØAn= 461 KFt , EQn= 443	K (YI = TIFL)	
		Ø Ma= 428 Kft , É Qa = 384		
	W16 X31, ILB= 1146 104,	\$ Ma = 414 Kft, \$ 9n = 274	K (41=4)	
	WI8X35, ILB = 1220 104,	Ø Mn = 433 Kft , 2 Qn = 194	K , CY1=6)	
	6 determine honzontal shear	strensth for shear stud		
	- using table 3-21 in steel i · deck perpendiculor	monual, determine On far shear	b ++ 2	
	· assume weak stud posi-	San -		
	· assume 1 stud /rib	=> 9n = 17.2 K		
	 use 31411 \$\overline\$ stud assume f's = 4 ksi 	1 stud/rib		
	normal wt conc.	15146/216		
	3 determine # of studs/bm for	r shapes listed in step s		
	$W14x30: \frac{EQ_{n}}{Q_{0}}x_{2} = \frac{443}{172}$	2) = 52 7 35' :. use 2 studs 1	rib => & Qn = 14,6 K	
		s = 62 studs/bra		
	w16x26: 384 x2 = 46 5 35'	:. use 2 studs / 10 => 384 (2) = 2	54 studs/ 6m	
~				
	W 16 x 31; 274 x2 = 32 < 35'	:. use 32 studs/rib		
	w 18×35: 199 ×2 = 24 × 35' :.	use 24 studs/rib		
	17.2			

composite steel Fir system Tech 2 page 4 of 9 @ evaluate bon listed in step & for economy WI8X35 W/ 24 studs : W 14x30 W/ 62 studs: 30 # x 35' + 62 studs x 10 # / stud = 1670 # 35 # x 35' + 24 studs x 10 # / stud = 1465 # w 16x26 w/ 54 studs: 26 # x 35' + 54 stude x 10 # / stud = 1450 # W16x 31 N/ 32 studs 31# x 251 + 32 studs x 10 #/ stud = 1405 # try W16 X 31 since it's more economical () check the depth of the compressive concrete block, a $q = \underbrace{\mathcal{E}Q_{n}}_{0,\mathcal{B}S\,fic\,befc} \qquad b_{efc} \text{ for interior ben } = \left| \begin{array}{c} \underbrace{Spon}_{\mathcal{B}} & + \\ \frac{1}{2} \underbrace{Spon}_{\mathcal{B}} & + \\ \frac{1}{2} \underbrace{spon}_{\mathcal{B}} & + \\ \frac{1}{2} \underbrace{spon}_{\mathcal{B}} & - \underbrace{1}_{\mathcal{B}} \underbrace{spon}_{\mathcal{B}} \underbrace{spon$ $\frac{3S(2)}{F} = \frac{52.5^{10}}{10C(2)} = \frac{52.5^{10}}{F} = \frac{3SC(2)}{F} = \frac{52.5^{10}}{10C(2)} = \frac{3SC(2)}{F} = \frac{10C(2)}{2} = \frac{60^{10}}{10C(2)} = \frac{10C(2)}{F} = \frac{60^{10}}{10C(2)} = \frac{10C(2)}{F} = \frac{60^{10}}{F} = \frac{10C(2)}{F} = \frac{1$ beff = 105" (1) check unshared strength w16x31, \$ hpp = 203 Kft (obtained from table 3-19 in steel manual) Wy = 1.4 b == + 1.4 b == = 1.4 (75 psf) (10 ft) + 1.4 (31 pif) = 1093 pif = 1.093 kif bL only
$$\begin{split} w_{\rm U} = 1.2 \, b_{\rm Slab} + 1.2 \, b_{\rm Im} \, {\rm self} - + 1.6 \, L_{\rm construct,} &= 1.2 \, (75) (16) + 1.2 \, (21) + 1.6 \, (20) (10) = 1257 \, {\rm plf} = 1.257 \, {\rm klf} \\ & T \\ & ut \\ & local \\ & construct, \end{split}$$
MUS 1.257 KIE (35) 2 192 KE < 203 KEt : ok for no shoring

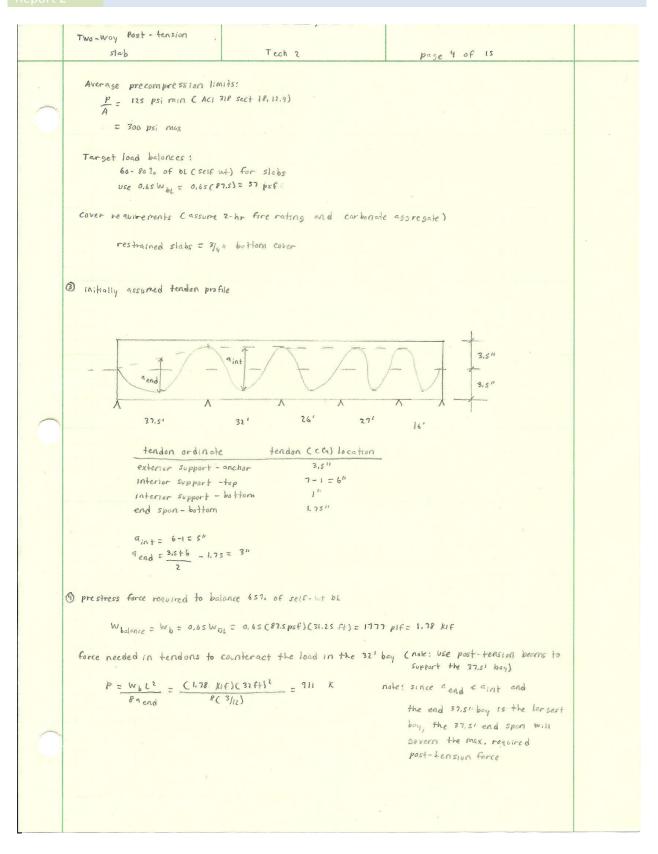
	composite steel Fir system Tech 2	page 5 of 9
	1) check wet concrete deflection	
0	Wwe = slab wt + bm self- wt = 75 psf (10 ft) + 31 plf = 7	81 pIF= 0.781 KIF
	$\Delta_{WC} = \frac{5(0, 181 \text{ kif})(35)^{\frac{1}{2}}(172P)}{384(21000)(375)} = 2.42''$	
	1 wc max 2 35(12) = 1.75"	
	since Awe 3 Awe, max, carn ber beern	
	camber, (= 0,80(2,42")=1,24" -> use (=2"	
	1 check LL and TL deflection	
	WLL = 0. 817 KIF	
	4257, and point 41=4 (29n=274K), Tube 1140104	
	A _{LL} = <u>S(0,817)(35)⁴(1728)</u> = 0.83" ≤ Δ _{LL, Max} = 1.17" :, ok 384 (2900)(1140) =	
	$A_{11} = \frac{S(bL+LL)L^{4}(172p)}{3F4 E I_{LB}} = \frac{S[FS0+31+817](3S)^{4}(172p)}{3F4(25000)(1140)}$	200 = 1,73" 4 47L = <u>356(12)</u> = 1.75" 240
	3 check Mu, Vu, and bra self ut assumption for W16X26	
	$M_{u} = 366 \text{ Kft} < \phi M_R = 414 \text{ kft} + ok$	
	$V_{U2} = 41.8 \ \kappa < \rho V_{02} = 131 \ \kappa \ .^{\prime} \ ok$	
	self-wt assumption: $\frac{31 \text{ plf}}{10 \text{ ft}} = 3.1 \text{ psf} < 5 \text{ psf}$, ok $\frac{1}{10 \text{ ft}}$ $\frac{1}{10 \text{ ft}}$	
	use with X31 bears w1 32 studs and C=2"	

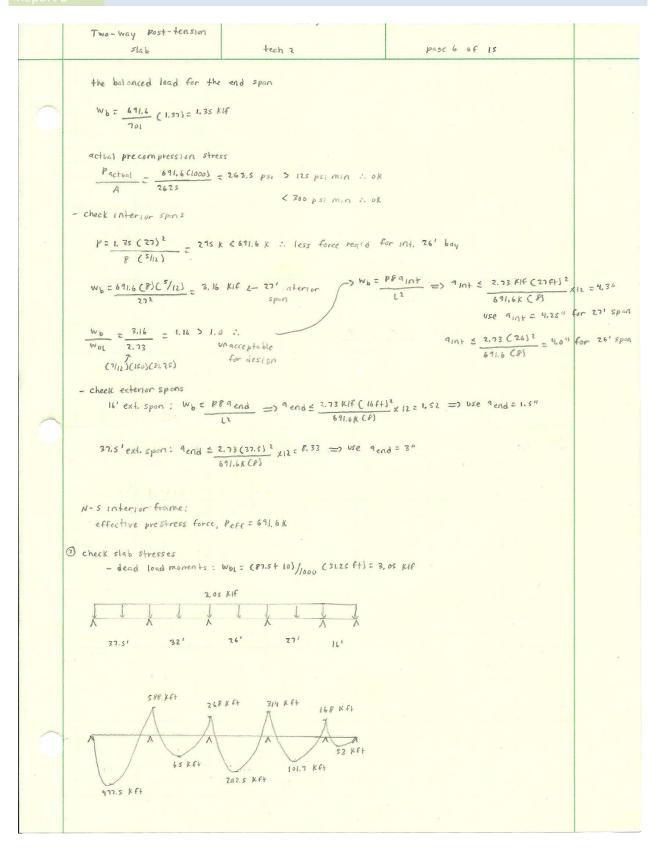


	composite steel Fir system	Tech 2	Pase 7 of 9	
	Qualy			
	(3) My and Vu Pu = 65,6K Pu	- 65.6 K		
-	Fa = 05, 5 p Fa	a Math to		
		1		
	65.6 K	65,6 K		
	10' 14'	10'		
	65,6K			
	Until 1 12			
	V4 CK) //////	7777		
	-65.6 K	1111		
	-03.0 R [4	and the second sec		
	656			
	MINING	X		
	Aucket)			
-	<u> Maril II ar a g g grand</u>			
	Va = 65,6K Mu = 656 KEt			
	MU 2 OSB RET			
	3 determine ELB based o	n All, mos and Atl, max		
	ALL MON = L = 30(12) =	$A_{TL, Max} = \frac{L}{240}$	= 30(12) = 45"	
· .	360 360	240	Eligo .	
	AL = 0,036 PL (3 (1728)	A=, = 0,036 P	+ 1 ³ (1728)	
	$\Delta_{L_L} = \frac{0,036 P_L L^3}{E T_{L,B}} (172P)$	ATL = 0.036 P	in the second se	
	ILB, MIN = 0.036 (18.8K) (3	$(a)^2 (172F) \qquad T_{LB, m,n} = 0$	036 (48.4 K) (30)3 C1728)	
	= 1089 104		27000 (1.5) 59 in 4	
			f (31.25 ')(10') = 48.4 K	
	$P_{L} = 60 \text{ psf}\left(\frac{27.5 + 35}{2}\right) C(s) = 18.8 \text{ K}$	in contraction of the second sec		
	(9) select potential w- shopes	from tables 349 and 3-20 in .	steel manual	-
	(select men	mbers with \$Mn 2656 Kft, IL		
	assume 12=6.5" (q= z")			
	W18X 40 ILR= 2020 1	n", ØMA= 684, 2 QA= 590	K YI = TFL	
	W18 X46, ILB = 2090 in	1, ØMn= 696 Kft, Eqn= 492	k, 71= 3	
	W21× 44 ELR = 2310 104	ØMaz 712 Kft , 2 Paz 43	1 K, 41=4	
	W21×48, ILB= 2290 in4	Ø Mn= 712 Kft, Eqn= 355 k	4156	3.0
	W21 X50, ILB = 2160 104,	Ø Mn = 693 Kft, EQn = 285 K	1 11 - 0	

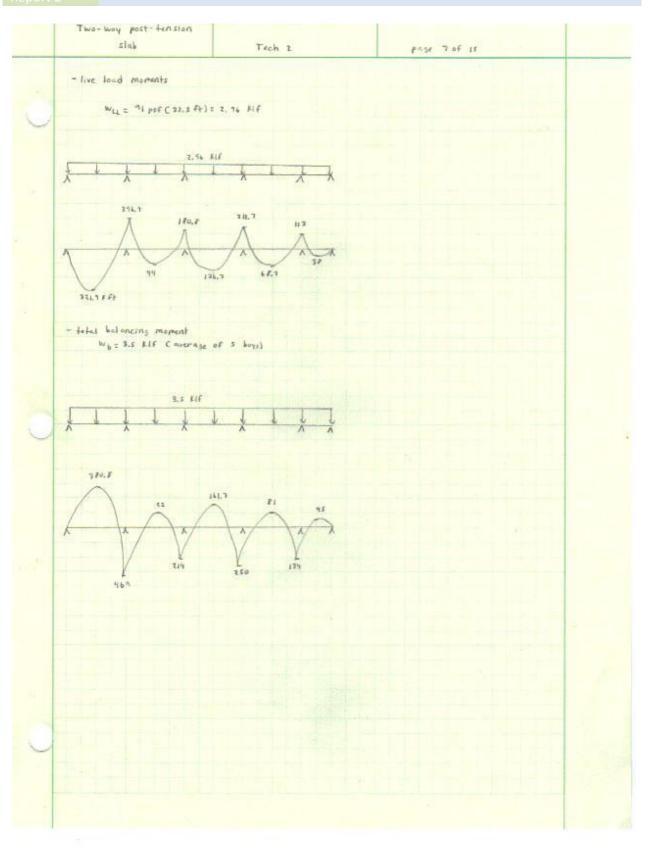
	Composite steel Fir system Tech 2 Page 8 of 9
	3 determine horizontal shear strength for shear stud
	·deck poraliej
1000	$\frac{w_{F}}{w_{F}} = \frac{4.75}{3} = 1.5P > 1.5$
	· assume neak position => Pn = 21.5 K
	use alun of stud
	narmaj ut conc.
	(determine # of studs/sinder for shapes listed in step 4
	$w_{18} \times 40; \frac{\epsilon}{q_n} \times 2 = \frac{s_{10}}{z_{1.s}} \times 2 = \frac{s_{10}}{z_{1.s}} \times 2 = \frac{s_{10}}{z_{1.s}} \text{ weix 48: } \frac{3s_s}{z_{1.s}} C_2 = 34 \text{ study} \text{ pirder}$
	Qn 21.5
	$\frac{12 \times 46}{21.5} \times 2 = \frac{46}{5} \frac{5 \times 10}{5} \frac{5}{5} \frac{1}{10} \frac{1}{5} \frac{1}{5$
	21.5
	$W_2(X, 4) = 42$ studes
	$\frac{431}{21.5} \times 2 = 42 \frac{54cds}{51cder}$
	3 evaluate sinders listed in step 4 for economy
	w18×40 W/ 56 studs
	40 # x 30' + 56 studs x 10 #/ stud = 1760 # 48# x30' + 34 studs x 10# [stud = 1780 #
	studie in the st
	WIRX46 w 46 studs wrixso w 28 studs
	46# x 301 + 46 studs x 10#/stud = 1840 # so # x301 + 28 studs x 10# Istud = 1750#
	wzix44 w/42 studs
	44 # x 201 + 42 studs × 10 #1 stud = 1740 #
	A 9776 A
	try will site to reduce structural depth.
	Check the compressive concrete block depth, a
	have a spon 1 spon 30000
	beff z $\left \begin{array}{c} \frac{spon}{p} \\ \frac{1}{2} + \frac{1}{2$
	$m_{10} = \frac{1}{2} \frac{1}{m_{10}} \frac{1}{2} \frac{1}{2} \frac{1}{m_{10}} \frac{1}{2} \frac{1}{m_{10}} \frac{27.5(12)}{2} + \frac{35(12)}{2} = 292.5''$
	2 2
	a= 1.93 " < assumed 2" . ak
-	0, 43 (4) (70)
-	
1	

Composite steel Fir system tech 2 page 9 of 9	
page	
3 check unshared strength	
WIBX 40, \$5 Mp = 294 K	
$P_{4} = 1.2 [75 (10) + 40] (31.25) + 1.6(20)(10) (31.25) = 39.6 K$	8
Mus Pug = 39.6 KC10 ft) = 396 Kft > Øb Mp 1. Sirder must be shored	
relect larger w-shope	
try w21x50, \$6 Mp = 413 Kft, Bu= 40K Circle so self wt)	
Muz 400 Kft < \$ 10 mp 1. OK for no shoring	
() check LL and TL deflection	
ALL = 0.036 (18.8 K) (30)3 (1728) = 0.50" < ALL, Max 21"	
29000 (21(60)	
ATL 2 0.036 (48.4) (30) 3 (1728) = 1,30" > ATL, Max 2 1.5"	
21000 (2160)	
Check Mu, Vu, and self order wt assumption	
$M_U = 656 \text{ Rft} < 0 A_R = 693 \text{ Kft} :. 0 \text{ K}$	8
$V_{LL} \ge 65.6 \ k < \phi \ v_n = 737 \ k$	
self-wt assumption = $\frac{50 \text{ plf}}{31.25 \text{ ft}} = 1.60 \text{ psf} < 5 \text{ psf}$. ok	
W trib	
use wriksa girder wir 28 studs	

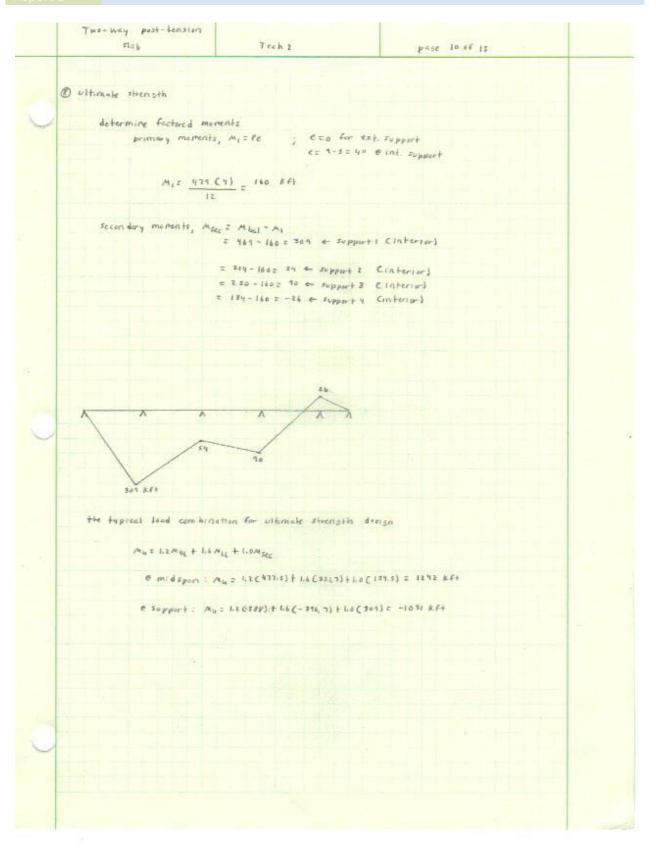

Appendix C: Alternative 2 – Two-Way Post-Tensioned Slab Floor System



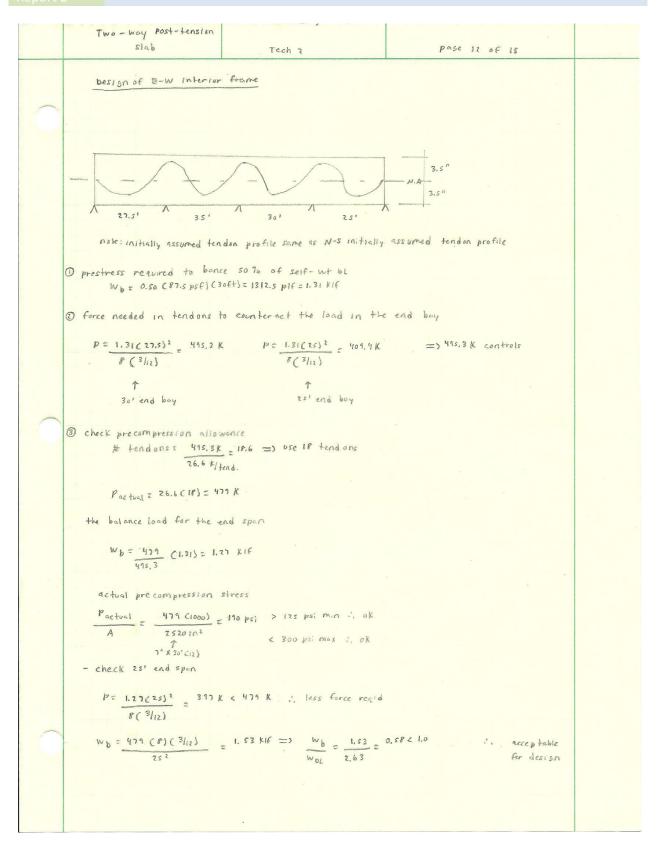
Report 2

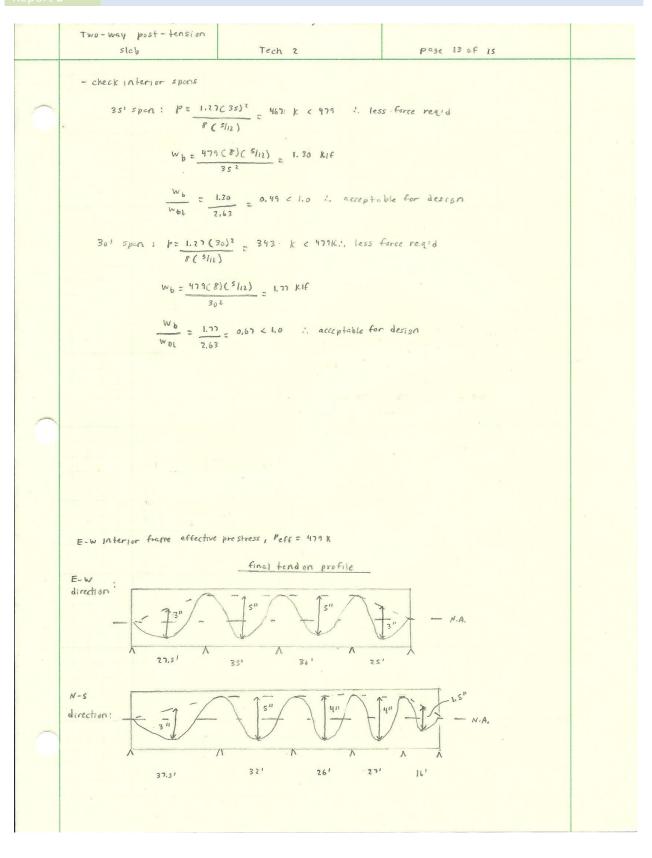

	Two - way	Post-tension			
	slab		Tech 2	page 2 of 15	
			reen t	page c or in	
	Loads;			4	
	10-2010-00	dead load = self	wt		
		sed dead load =			
		5 100 psf			
	2 hour f	ire rating			
	Materials				
	concrele	: NW iso pef			
		f'c = soou psi			
		fic: 2 3000 ps;			
		0			
		fy = 60,000 ps;			
	197	unbonded tend			
		12" Q J-Wird	strand, A= 0.153 in 2		
		Fpy = 270 ksi	stress losses = 15 ks; CACI 18.6)		
			si) - 15 ks; 2 124 ks; (Ac1 18.5.1)		
			(0.153)(174) = 26.6 K/ tendon		
		reff a mille a	tendon		
	Preliminar	, slob this kness		typical bay:	
	start wit	h $\frac{L}{L} = \frac{45}{45}$			
		ĥ		26'	
	shortest sp	sn = 26'			
~	The lease in	h= 26 (12) _ 7"	preliminary slob thickness		
		45	,	35'	
	Loading				
	bL = self 1	NT = ISO POF (7/12	ft)= 87.5 psf		
	SEL = 10 ps				
		osf -> reduce if			
	and and	N-S LL	reduction 1 (37.5)(31.25)= 1171.9ft2 > 400 f		
	37. S X 31,25'	Frame : KLL ATE	1 (\$7.5) (\$1.25) = 1171,944 > 400 F	t ² : old to reduce LL	
			an (a sal 11) - 100 C 0 691-	66	
		.(=1	00 x (0.25 + 15) = 100 (0.69) =	a pit	
			C VILLA		
	32 * 31.25' 4	in ma 1 ku A -	1 (32) (31,25) = 1000 ft2 > 400 ft2 .	ok to induce 11	
		rane . ALL AT-		and the restored apply	
		L= 100	(0,72) = 72 psf		
	26' × 31.25' fro	me: KII AT= 11	(26) (31.25) = 812.5 ft 2 > 400 ft2	i, ok to reduce LL	
		L= 100 1	0,78)=78 psf		
-	16' x 31.25' from	ne: KELATZICI6)(31.25)= 500 ft2 > 400 ft2 ok f	a reduce 11.	
		L= 104 (0	.92)= 92 psf		
	27' X 31.25' fro	ime: Kil AT = 1(2°	1)(31.25) = 843.75 ft 2 3 400 ft 2 o	k to reduce LL	
		L= 100 Co.	niz zz psf		

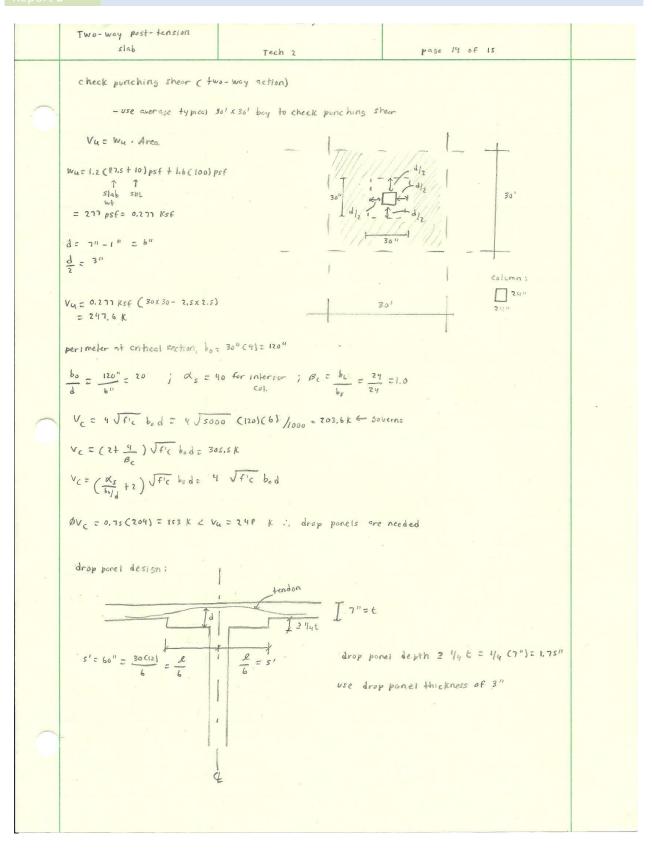
	Two-wey Post-tension slab	Tech 2	pase 3 of 15	
		5		
_	E-W LL redu	iction		
).	30' X 30' bay : Kil AT = 1	(30)(30)= 900 > 400 Ft2 1. ok	to reduce el	
	L= 100	(0.75)=75 psf		
	35' × 30' bay : Ku ATZ 10	[35] (30) = 1050 > 400 ftz ; okt	o reduce LL	
		0.71) = 71 psf		
		()(30) = 750 > 400 ft2 :, ok to	beduce 11	
			conte et	
	L= 100Cd,	Po) = Fo psf		
	besign of N-s interior frame	2		
		an Art 12 a		
	use Equivalent Frame Methon total bay width between a			
		ustions for hand calculation sim	plicity	
		4 pattern loading not require Cto simplify preliminary cele	ed	
			,	
-	O calculate section properties			
	two way slab must be design	ed as closs U -> from Aci 318 se	ction 18.3,3	
	gross cross-sectional propertie	es allowed -> from Ac1 718 sect 18	3,4	
	A= bh = (31.25')(12)(7 i	01 = 2625 102		8
	$s = \frac{bh^2}{4} = \frac{(325 \text{ in})(7 \text{ in})}{4}$			
	6 6	ned for		
(2 set besion parameters			-
	allowable stresses ; class u			
	at time of jacking (Ac1 318	sect 18,4.1) :		
я	f'ci = 3000 psi			
	$compression = 0.6 f'_{C_i}$ Tension = $3\sqrt{f'_{C_i}} = 3$	z 0.6 (3000) z 1,800 ps; J 3000 z 164 ps;		
	at service loads (Ac1 318 se	act 18,4,2 (4) and 18, 3, 3)		
	fic = sooo ps;			
		c d.45(5000) = 2, 250 ps;		
	Tension = 6 Jfic = 6 Js	000 = 424 psj		



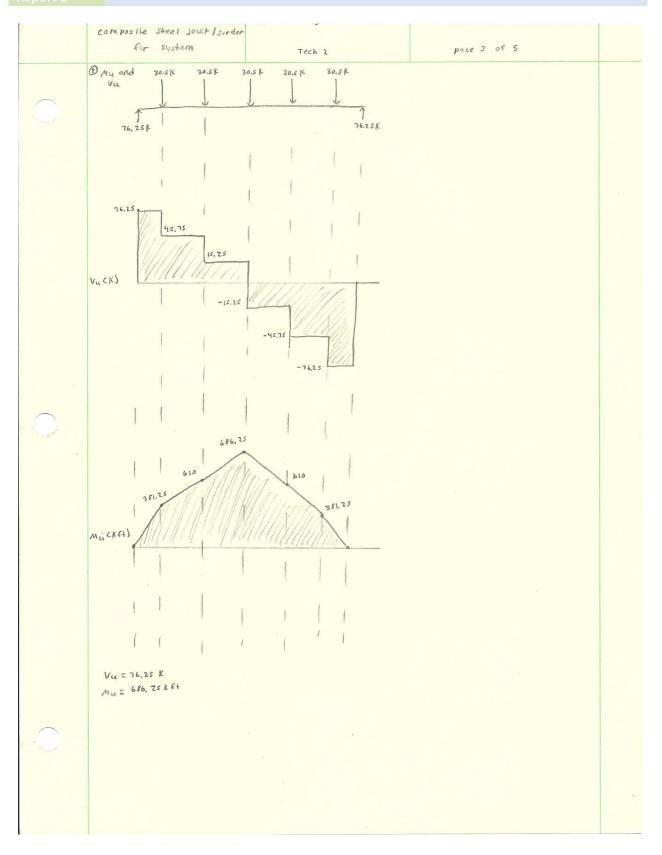
Technical Report 2




	sleb	Tech 2	pass Pof 15	
				_
	stage is stress immediately af	her Jacking Colt PT)	+ tension	
-			- CAM pression	
			+ mamment creates ten c+1 @ bot	
-			and comp (-1 e top	
	mid sport stresses			
	Ftop = C-MOL + Mbui)	1 1/4		
	fbot = Ct Mal - Nbci) / s	A Provide State St		
	and the sector / f	ter ter ter		
	interior spans :			
	Su' such - F.	= (-45+ #2) C12 [A]F+) C1000	- its = -195 < 0.6 f'c; & 0.6 f'c; = 1800 ps; 2	. ek
		0p	Compression	
	f _s ,	it = 24 = 125 = -101 ps; carepoi	ssion < iPoops; J. ak	
		The second s		
	30' span - fts	p = (-toz, s + 1127) (12) (1000)	-125 = - 200 < d. 6 f ¹ e ₂ = 1900 ps; 1. ak	
		4500	Compression	
	6	- 75-125 = - 50 psi & IFou	PE, J. OK	
		cam press (an	131001-2719	
	is' span - ftap	2 (-101.7 + 81) (11) (1000) -1	15 2 -163 < 0.6 ftc, 2 (Foo 1. 0)	
-		6100	Carn pression	
-	fur	1 1 - 125 = - 87 < 1804 ps.	1 45	
		Core press ten		
	ectorium spons:			
	37.5' spon - ft	1 = (-477.5 + 380, 8) (12) (100	6) -125 = -343 < 1800 pr. 1. 0K	
		6600	<ompression< td=""><td></td></ompression<>	
	f.	= 178.5 - 125 = 53.5 = 3JP	- 164 pri 2 of	
-	P3 1	Jeaston		
	16' span - Flop :	(-53++5) (12) (1000) - 125	2 -134. ₽ & 1Foo psi 1. 0K	
		6500	Compression	
	6	14.8- 125 : -110 < 1800 psi	- ar	
	- P01-	Compression	O.K.	
		Compression of the second		
-				
1				
-				
			and the second sec	


	icy post-tension		a del
	slab	Tech 2	pase 9 of 15
stage z	: stressies at service	load chlict + pr) after los	a et
(**	dspon stresses ftop = C-MoL - MLL	1 m. 3 / P/	
	ittah ti ci var - wit	T / bei / S = 5/A	
	fbot = Ct MBL + ALL	L - AL bar) / = P/A	
	Interior spens		
	se' spon - ft	14 = (-45 - 44 + 52) (12) (1000)	- 125 = -220 / < 0.45 f'c = 2250 % ok
		6.600	(come)
	fbo	+ = 105 - 125 z - 20 C 2250 p Comp.	2; 2. 0K
	34' Spen - Ftop	, = C-202.5 - 136.7 + 161.2) CELC	1000) - 1252 - 452,7 C 2250 - 1252
		6100	ccomp]
-	f _{kst}	2 327.7 - 1252 202.7 pr. 2	6 JFic = 424 pe, 1. 0K
		tension	
	zs' spen - ftep z		12.5 2 - 290 . 1 p31 e 2250 % ok
- the		6500	(Comp)
-	f bet :	e 115 - 12fe 4a per e 484 pe tension	K
	exterior spons		
	37,5 ^t spen - f _{fap}	= <u>C-477,5 - 321,7 + 350,82612</u> 6500)(1000) = 125 = - PS1 C 2256 ps. 1. OK
1.2.		and the second s	
	f bat	clentim) ⇒	424 ps; Not Bood
	16' spen - ftep t	C-13-30+45)C(1)C(000)	124 210 € 2250 pti 1. 0K
		6500	(comp)
	f _{bata}	85 - 125 2 -40 € 2250 paj 2.	0.K
		(comp)	
	1		
1			
-			

5lab	Tech 2	page 11 of 15
	Anteologi	
determine minimum b	unded reinforcement	
positive moment		
30' interior spo	1 : 16t = 202.7 > 2 JFE = 2 J	Soon = 141. 4 pri 2. reinf. positive
		re 210
	minim per min. reint. reild	
	and the same same of a	
Y	$=\frac{f_{E}}{(f_{E} f_{E})} = \frac{2az.7}{(zzz.7+4zz.7)} c_{1}$	olz Relia
	(fillfi) (222.77452.7)	
Ne	= Malt All [202.5]	+ 1367) KAT (16) (0,5) (3,1) (32,5) (16) =
		f 136.7) kft (12) (0.5) (31) (32.5) (16) = 0
	= 371,1 K	
As	MID = NC 378,5	26 112
	$m_{in} = \frac{N_c}{\epsilon_s f_y} = \frac{32\ell_s}{\epsilon_s (\epsilon_0)} = \frac{1}{\epsilon_s}$	
d.,	which belie recal, over 32.5 ft width	
A	F, MIA 2 124 102 2 0, 37 in2/Ft	
1	os reinf use #3 e 12" o.c. bet	lang = 0.60 in \$ / FA
	note use same in	ent. in 25' interior bay
37.5' exterior spi	m : fe = 647 pris 3 2 JFic = 1464 p	psi i reinf, positive regid
	4 = 647 (11 - 4.2 in	
	4 = (147 + 897) (10) = 4.2 in	
	change all the set	and a second
	N _L = (4113+34, 1) H+ CILL	(a.s) (4.2) (32.5) (11) = 120F K
	As, min = 120P = 90 int	
	distribule over 32.5 ft width	
	As, min = 40 32,5 = 1.23 (n2/ ft	


Appendix D: Alternative 3 – Composite Joist/ Steel Girder System

	composite steel Joist/ our der		
	fir system	Tech 2	page 1 of 5
	_		composite floor deck design
-			1) superimposed lood on deck
	And the second	and a second	total lead = 110 psf + sleb + deck
~	51 51		
	©.	6 spa	@ \$' = 30'
	teresti per della seggi o ittera que a construir a la construir a la construir de la construir de la construir	e fan it de ferste sen en e	3 - ctr-ta-ctr spon of supports = s'-o"
		and the Descher Descent and the second state of the second state o	- 3 + spon condition
) deck type - select deck type
			From Vulcraft steel deck composite
		I	2010 catalog
			use 1.svL22 with 6" thick slab
			(4.5" topping for 2 hr fire rating) - superimposed uniform load = 400 psf > 110 psf
	interior composite joist des	ien 31	04
			- deck max sol const. spon = 6'-4"> s'-0"
	1 total load		- self wt = 63 psf
	dead load:		
	sol - lo psf		
	slab - 63		
<u> </u>	$W_0 = Clot 63)psf Csft) = 3$	65 plf.	
	live load :		
	Lo = 160 psf		
	influence area = KLL AT = =	L (Sf+)(35 f+) = 350 f+2 < 400 f+2	:. LL cannot be reduced
	w1 = 100 psf (sft) = 500 p	n¢	
		11000 10 1000 10	
_	total load, whi = 1.2 (365) t	1.6 (500) = 1238 plt	
	2 Joist Span - 35'-0"		
	C Just spon - 23 -0		
	3 ctr - to - ctr joist specing -	s'-o"; number of spaces =	30' _ 6
		1	normality and the second se
	(9) select juist from vulcraft	composite joists 2009 catalog	
	- 1465 : - allowable load	= 1400 plf > 1238 plf : ok	
	- allowable Li +	ist produces = 607 pif > 500 pif : 1	oK
3	a deflection of	4360	
	- allowable total	acd = 607 (360/240) = 910.5 plf	:) Bos plf :. ok
	that produces a	deticonon	
	of 4/246	tuds/ spon = 40 - 5/8" & studs	
	- humber of shorts	spon - 10 10 T	
	- 2 rows of bridg	105	
	use a 1405 1400/607 com	possile Joist with (40)-518" & stu	de

	composite steel Joist / Dirder				
	for system	Tech 2		pase 2 of 5	
Q	II 	E	4- 6 spa € 5' = 3a ¹	,	
	I I / Z7 ¹ -6 ¹¹ / / total load	I 35'- 0 " . 1			
	dead load: slob-63 psf spl-lopsf joist self-wt-22 live lood:		~ self- wt estir	nate - 5 psf	
0	Lo = 100 psf LL reduces to 60 ps	sf+)(31.2sf+) + 1.		eel fir system" calcs) .zsft}	
0					

Technical Report 2

GEA JOHNSON STRUCTURAL OPTION

	composite steel joist / sirder			
	for system			
		Tech 2	pase 4 of 5	
	D data and T break and			
_	3 determine Ix based on b	ll, max and otl, max		
	assumption: four or more .	eavel point loads may be assi	ined distributed	
	Wu= 1.2 (63+10+5) psf (3	1.25 f+) + 1.2 (4.4 psf) (31.25 f+) +	1.6 (60 psf) (31.25 ft)	
	= 6.1 plf	22 plf		
	A 0001 - 1 30(11) 14	sft		
	$\Delta L_1 \max = \frac{L}{360} = \frac{30C(12)}{360} = 1^{11}$	southributary width	1	
	r infactored LL			
	IX 2 5(1.875 kif)(30 ft)" (1 384(23000)(1")	1128) = 1178 104		
	384(29000)(1")			
		11		
	ATL, Max = L = 30 (12) = 1.5			
	- unfactored	bL		
	Ix 3 5(1, P75 + 2.56) (30) 4 (17	28) = 1858 104		
	384(24000)(1.5)			
	using table 3-3 in manual			
	try WZIX93 , Tx= 2070 104	1.,		
\sim				
()	Mu ≤ ØMn			
	accompany aider is simply	in summer bed and lakened br	ced at soist locations only 1,	
	the unbraced lensth Lbs		the second start of the se	
		s		
	$M_{4} = \frac{(6.1 \text{ plf})(30 \text{ ft})^{2}}{8} = 68$	6.3 KA		
			abused leasth bubles	
	$L_b = s' < L_p = 6.50'$ CA	from table 8-2) :, there is no i	Interes constit has eached	
	0 b Mpx = 829 Eft > Mu	1. 0K		
	use WZIX93 girder			
	B check Vu ≤ ØVn			
	& crect vu E pon	1 21- K & ON- 376K (Fr	om table 3-2) 0K	
	Vu = Wul = 6.1 plf Looft	$\int 91.5 K \leq 0 V_{0} = 376 K (fr)$		
	٤			
\frown				

	composite steel joist/sirder			
	fir system	Tech 2	pase 5 of s	
	() check steel joist and steel sirde	r deflections		
	steel joist ! All 2 SC 0.50 KIE) 384 C21	(35 ft) (1728) 0.96" <	4360 = 1.17" 2. 0K	
	384 629	000)(606 119)		- 8
	A SCARKEN	351 4 (1228)		
	NTL 2 5 C 10 10 10 10	$\frac{(35^{1})^{4}(1128)}{(00)(606(n^{3}))} = 1.66^{44} < 1$	1/240 = 1.75" 2. OK	
	201000			
	steel ander: A SCIETS KIELO	30 FL) 4 (1728) 0,57 " <	Yara III to ok	-
	steel girder: Que s (1.875 kifle) 384 C	29000 (2070 104)	1360 -	
	ATLZ SC4.44 KIF)C3	of+14 (1728) = 1.35" < 4	240 = 1.5" 1. 0K	
	384 (290	100) (2010 ini)		
•				
			8	

Vulcraft 2009 Composite Joist Table

NORMAL WEIGHT CONCRETE

DESIGN GUIDE LRFD WEIGHT TABLE FOR COMPOSITE STEEL JOISTS, (

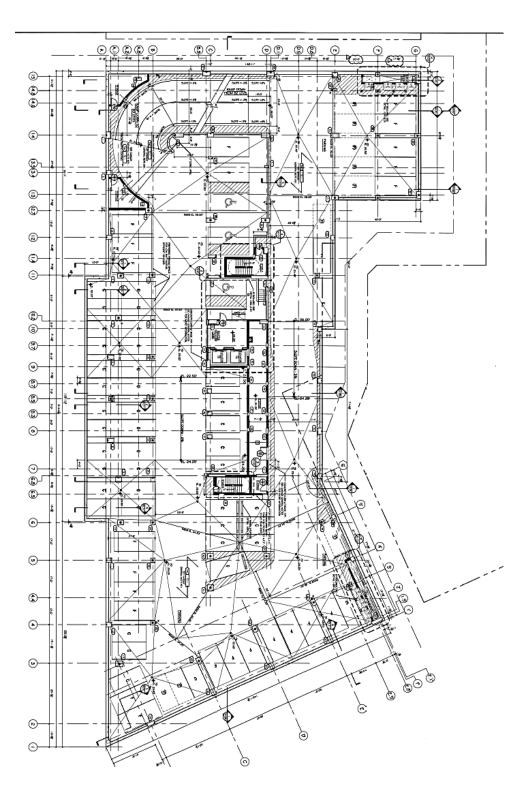
						50 ksi Maxim				-				
-					BEARING H	EIGHT	2 1/2"	5"	7 1/2"					
									Conci	rete Slab Para	ameters			
								No	ormal Weight	Concrete (14	5 pcf) f'c = 4.0) ksi		
			hr (in.)	1.5	1.5	1.5	2	2	2	2	2	3	3	3
			tc (in.)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
			Js (ft.)	5	5.5	6	7	7.5	8	9	10	11	12	13
	Joist Span	Joist Depth				То	tal Safe Fa	ctored Uni	formly Dis	tributed Jo	ist Load in	Pounds Po	er Linear F	oot
	(ft.)	(in.)	TL	1400	1600	1800	2000	2200	2400	2700	3000	3300	3600	3900
			Wt(plf)	22	25	27	29	33	33	38	41	43	47	53
			W360(plf)	607	695	750	871	984	994	1130	1229	1386	1478	1627
		14	N-ds	40-5/8"	50-5/8"	54-5/8"	44-3/4"	52-3/4"	52-3/4"	60-3/4"	70-3/4"	62-3/4ª	70-3/4"	80-3/4
			leff(in4)	606	694	748	870	982	992	1130	1230	1380	1480	1620
			Bridging	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(1)H	(1)H	(1)X
	4		Wt(plf)	21	23	25	28	29	31	34	38	41	42	46
		16	W360(plf)	654	724	819	950	1012	1108	1160	1304	1524	1557	1660
			N-ds	38-5/8"	40-5/8"	50-5/8"	38-3/4"	44-3/4"	52-3/4"	52-3/4"	60-3/4"	62-3/4"	62-3/4"	70-3/4
			leff(in4)	652	722	817	949	1010	1110	1160	1300	1520	1550	1660
			Bridging	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(1)H	(1)H	(1)H	(1)H	(1)X
			Wt(plf)	16.5	19.0	21	22	25	27	33	36	38	40	44
		18	W360(plf)	691	785	857	957	1065	1141	1374	1509	1651	1687	1855
			N-ds	48-1/2"	38-5/8"	40-5/8"	42-5/8"	34-3/4"	38-3/4"	52-3/4"	62-3/4"	52-3/4"	52-3/4"	62-3/4
			leff(in4)	689	783	855	955	1060	1140	1370	1510	1650	1680	1850
			Bridging	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(1)H	(1)H	(1)H	(1)H	(1)X
			Wt(plf)	15.6	17.8	19.5	21	24	26	30	33	35	39	41
			W360(plf)	783	877	966	1100	1212	1292	1520	1659	1804	2026	2054
		20	N-ds	44-1/2"	34-5/8"	36-5/8"	38-5/8"	32-3/4"	34-3/4"	44-3/4"	52-3/4"	44-3/4"	52-3/4"	52-3/4'
			leff(in4)	781	875	964	1100	1210	1290	1520	1660	1800	2020	2050
			Bridging	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(1)H	(1)H	(1)H	(1)H	(1)X
			Wt(plf)	14.8	16.9	19.1	20	23	24	29	31	35	36	40
			W360(plf)	869	968	1129	1207	1358	1438	1694	1794	2120	2161	2415
	35	22	N-ds	40-1/2"	30-5/8"	38-5/8"	34-5/8"	30-3/4"	32-3/4"	38-3/4"	44-3/4"	44-3/4"	44-3/4"	52-3/4'
			leff(in4)	868	966	1130	1200	1360	1440	1690	1790	2120	2160	2410
			Bridging	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(1)H	(1)H	(1)H	(1)H	(1)X
			Wt(plf)	14.3	16.2	18.1	20	22	23	28	29	32	36	37
			W360(plf)	950	1052	1209	1395	1525	1579	1835	1960	2234	2491	2524
		24	N-ds	36-1/2"	28-5/8"	34-5/8"	34-5/8"	40-5/8"	30-3/4"	34-3/4"	38-3/4"	36-3/4"	44-3/4"	44-3/4"
			leff(in4)	948	1050	1210	1390	1520	1580	1830	1960	2230	2490	2520
			Bridging	(2)H	(2)H	(2)H	(2)H	(2)H	(2)H	(1)H	(1)H	(1)H	(1)H	(1)X

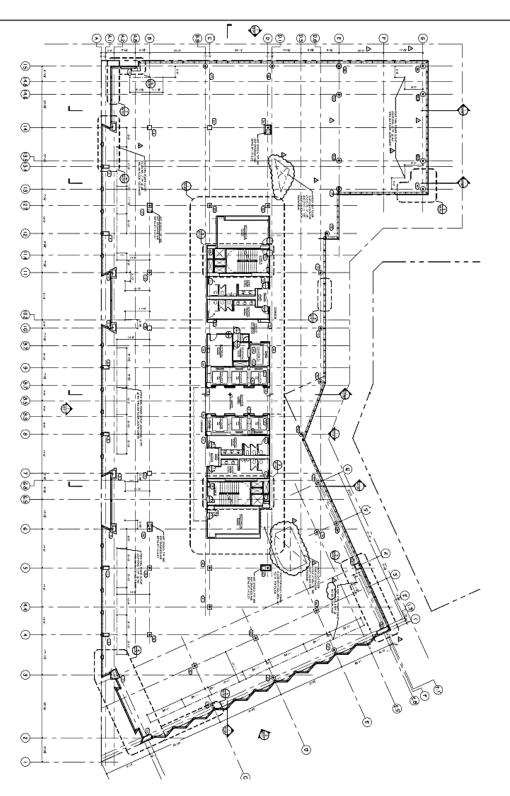
Appendix E: R.S. Means 2010 Cost Details

Two-Way Flat Slab System

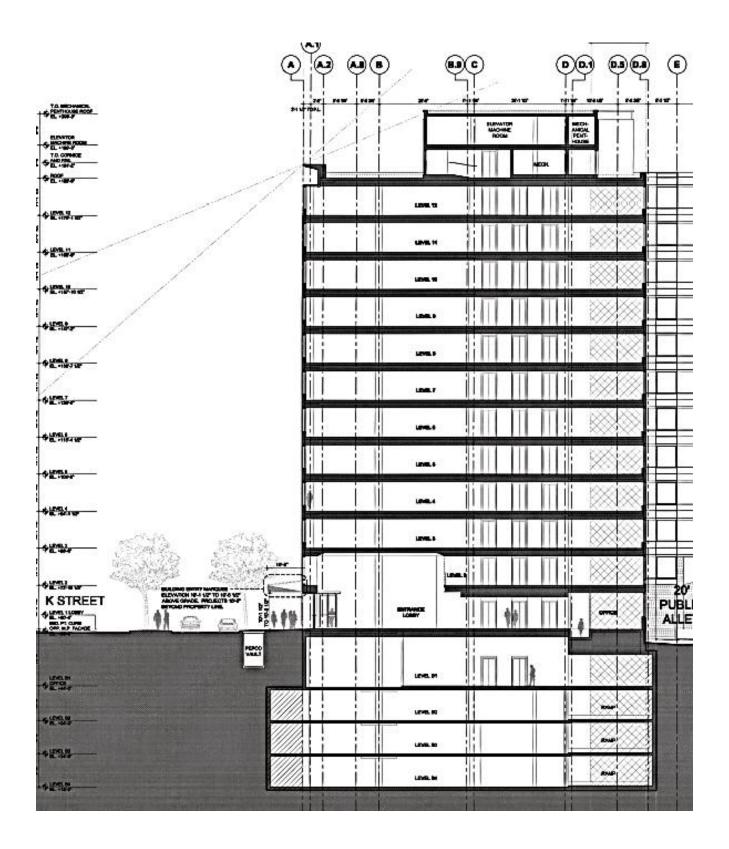
B101	0 222	Cast in Place Flat Slab with Drop Panels							
	BAY SIZE	SUPERIMPOSED	MINIMUM	SLAB & DROP	TOTAL	α α	DST PER S.F.	8 - N	
	(FT.)	LOAD (P.S.E.)	COL. SIZE (IN.)	[INL]	LOAD (P.S.F.)	MAT.	INST.	TOTAL	
1960	20 x 20	40	12	7-3	132	4.99	8.25	13.24	
1980		75	15	7-4	168	5:30	.8.45	13.75	
2000		125	18	7-6	Z21	5.85	8.75	14.60	
3200	312	4ij	-12,	8-1/2-5-1/2	154	5.85	8.65	14.50	
4000		125	20	81/2 81/2	243	6.55	9.30	15.85	
400		200	-24	9-84/2	329	6.93	9.55	16.45	
500.1	25 1.30	4)	14	91/2-1	165	6.35	9	15.35	
5200		/5	18	.91/2-7	203	6.75	9.35	16.10	
5600		125	22.	91/2-8	255	7.05	9.55	16.60	
5400	30 e 30	40	14	101/2-74/2	152	6.30	9.20	16.10	
-5630		A	18	MATIA	217	2 20	3.50	16.00	
-1900		125	22	101/2-9	269	7,601	3.85	17.45	

Composite Beam with Composite Deck System


B101	10 256	×	Composi	te Beams, Deck & Slab					
1	BAY SIZE	SUPERIMPOSED	SLAB THICKNESS	TOTAL DEPTH	TOTAL LOAD	C(COST PER S.F.		
	(FI.)	LOAD (P.S.F.)	(09.)	(FTIN.)	(P.S.F.)	MAT.	INST.	TOTAL	
2400	23x25	40	51/2	1-51/2	80	10	5.70	15.70	
2506		75	51/2	1 91/2	115	13.40	5.70	16.30	
2750		125	51/2	1.91/2	167	12.80	6./5	19.55	
2900		200	51/4	1-11-1/2	251	14.50	725	21.75	
3000	25x25	40	5)/2	1-91/2	87	9.65	5.45	15.10	
3100		75	51/2	1 111/2	118	10.80	5.55	16.35	
3200		125	51/2	2-24/2	169	11.30	õ	17.30	
3300		200	61/M	2-51/4	252	15.35	7	22.35	
3400	25x30	40	51/2	1-11-1/2	-63	9.85	5.40	15.25	
5600		75	51/2	1-11-1/2	119	10.65	5.50	16.15	
.3900		125	51/2	t-114/2	170 -	32,50	6.20	18.70	
4000		200	61/4	2-6-1/4	252	15.40	7	22.40	
4200	30x30	40	51/2	1-11-1/2	81.	10.10	5.55	15.65	
4400		40 75	5-1/2	2-21/2	116	10.90	5.80	16.70	
4500		125	51/2	2.51/2	158	[3,37]	6.50	19.83	
4700		200	61/4	2.91/4	252	16,10	7.55	23.65	


Steel Joist/ steel girder floor system

B1010	250	S	teel Joists,	Beams & S	iab on Colu	ymns		
	BAY SIZE	SUPERIMPOSED	DEPTH	TOTAL LOAD	COLUMN	C	OST PER S.F.	
	(FT.)	LOAD (P.S.F.)	(IN.)	(P.S.F.)	ADD	MAT.	INST.	TOTAL
5300	25x25	100	29	145		11.25	5.90	17.
5400		9			column	1.15	.38	1.
5500	25x25	125	32	170		11.90	6.20	18.
5600					column	1.27	.42	1.
5700	25x30	40	29	84		9.45	5.50	14.
5800					column	.95	.32	1.
5900	25x30	65	29	110		9.75	5.75	15,
6000					column	.95	.32	1.
6050	25x30	75	29	120		10.60	5.25	15,
6100					column	1.06	.35	1.
6150	25x30	100	29	145		11.45	5.50	16.
6200					column	1.06	.35	1.
6250	25x30	125	32	170		12.30	6.80	19.
6300					column	1.22	.40	1.
6350	30x30	- 40	29	84		9.90	4.98	14.
6400					column	.88	.29	1.
6500	30x30	65	29	110		11.25	5.45	16.
6600					column	.88	.29	1.
6700	30x30	75 🔹	32	120		11.50	5.50	17
6800					column	1.01	.33	1.
6900	30x30	100	35 `	145		12.75	5.95	18.
7000					column	1.18	.40	1.
7100	30x30	125	35	172		13.90	7.40	21.
7200	00.05		20	07	column	1.31	.44	1.
7300	30x35	40	29	85	an in star	11.15	5.40	16.
7400	00.05			111	column	.75	.24 6.85	19.
7500	30x35	65	29	111	101000	12.30	6.85	19.
7600	00 0F	75	20	101	column	.97	6.85	1.
7700	30x35	75	32	121	column	.99	.00	19.
7800	20.25	100	35	148	CONTIN	13.40	6,20	19.
7900	30x35	100	35	148	5	13.40	.20	. 1.
8000	20.25	105	38	173	column	1.22	6,70	21.
8100	30x35	125	38	1/5	column	14.80	.41	1.
8200	35x35	40	32	85	CORTIN	1.24	5.50	16.
8300 8400	20820	40	32	60	column	.87	.28	10.
8400	35x35	65	35	111	CONTIN	13	7.10	20.
8500	20720	CO	, JU	111	column	1.04	.35	1.
9300	35x35	75	38	121	COUNTIN	13.35	7.20	20.
9300	20820	70.	20	121	column	104	25	1.
9400	25/25	100	38	148		14.40	7.65	22.
9500 9600	35x35	100	- 30	140	column	14.40	.42	l.
	25-25	105	41	173	COULTIN	1.29	6.95	22.
9750 9800	35x35	125	41	1/3	column	15.65	.44	1.


Appendix F: Typical Floor Plans

Typical underground parking plan rotated 90 degrees CW

Typical Floor plan oriented 90 degrees CW

Building Section